Для термина Архей см также другие значения Архе и в единственном числе архе я от лат Archaea от др греч ἀρχαῖος извечный
Архебактерии

Архе́и (в единственном числе — архе́я, от лат. Archaea, от др.-греч. ἀρχαῖος «извечный, древний, первозданный, старый») — домен живых организмов (по трёхдоменной системе Карла Вёзе наряду с бактериями и эукариотами). Археи представляют собой одноклеточные микроорганизмы, не имеющие ядра, а также каких-либо мембранных органелл.
Археи | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
![]() Halobacteria, штамм NRC-1, каждая клетка длиной около 5 мкм | ||||||||||
Научная классификация | ||||||||||
Домен: Археи | ||||||||||
Международное научное название | ||||||||||
Archaea Woese, [англ.] and [англ.]1990 | ||||||||||
Синонимы | ||||||||||
| ||||||||||
Типы | ||||||||||
| ||||||||||
|
![]() |
---|
Аудиозапись создана на основе версии статьи от 4 октября 2012 года. Список аудиостатей |
Ранее археи объединяли с бактериями в общую группу, называемую прокариоты (или царство Дробянки (лат. Monera)), и они назывались архебактерии, однако сейчас такая классификация считается устаревшей: установлено, что археи имеют свою независимую эволюционную историю и характеризуются многими биохимическими особенностями, отличающими их от других форм жизни.
Сейчас археи подразделяют на более чем 7 типов. Из них наиболее изучены кренархеоты (Crenarchaeota) и эвриархеоты (Euryarchaeota). Классифицировать археи по-прежнему сложно, так как подавляющее большинство из них никогда не выращивались в лабораторных условиях и идентифицировались только по анализу нуклеиновых кислот из проб, полученных из мест их обитания.
Археи и бактерии очень похожи по размеру и форме клеток, хотя некоторые археи имеют довольно необычную форму, например, клетки Haloquadratum walsbyi плоские и квадратные. Несмотря на внешнее сходство с бактериями, некоторые гены и метаболические пути архей сближают их с эукариотами (в частности ферменты, катализирующие процессы транскрипции и трансляции). Другие аспекты биохимии архей уникальны, к примеру, присутствие в клеточных мембранах липидов, содержащих простую эфирную связь. Большая часть архей — хемоавтотрофы. Они используют значительно больше источников энергии, чем эукариоты: начиная от обыкновенных органических соединений, таких как сахара, и заканчивая аммиаком, ионами металлов и даже водородом. Солеустойчивые археи — галоархеи (Haloarchaea) — используют в качестве источника энергии солнечный свет, другие виды архей фиксируют углерод, однако, в отличие от растений и цианобактерий (синезелёных водорослей), ни один вид архей не делает и то, и другое одновременно. Размножение у архей бесполое: бинарное деление, фрагментация и почкование. В отличие от бактерий и эукариот, ни один известный вид архей не формирует спор.
Изначально архей считали экстремофилами, живущими в суровых условиях — горячих источниках, солёных озёрах, однако потом их нашли и в более привычных местах, включая почву, океаны, болота и толстую кишку человека. Архей особенно много в океанах, и, возможно, планктонные археи — самая многочисленная группа ныне живущих организмов. Археи признаны важной составляющей жизни на Земле. Они играют роль в круговоротах углерода и азота. Ни один из известных представителей архей не является ни паразитом (за исключением наноархеот, являющихся паразитами других архей), ни патогенным организмом, однако они часто бывают мутуалистами и комменсалами. Некоторые представители являются метаногенами и обитают в пищеварительном тракте человека и жвачных, где они помогают осуществлять пищеварение. Метаногены используются в производстве биогаза и при очистке канализационных сточных вод, а ферменты экстремофильных микроорганизмов, сохраняющие активность при высоких температурах и в контакте с органическими растворителями, находят своё применение в биотехнологии.
История открытия

Первые представители группы обнаружены в различных экстремальных средах обитания, например, геотермальных источниках.
На протяжении большей части XX века прокариоты считались единой группой и классифицировались по биохимическим, морфологическим и метаболическим особенностям. К примеру, микробиологи пытались классифицировать микроорганизмы в зависимости от формы клеток, деталей строения клеточной стенки и потребляемых микроорганизмами веществ. В 1965 году было предложено устанавливать степень родства разных прокариот на основании сходства строения их генов. Этот подход, филогенетика, в наши дни является основным.
Впервые археи были выделены в качестве отдельной группы прокариот на филогенетическом древе в 1977 году Карлом Вёзе и Джорджем Эдвардом Фоксом при сравнительном анализе 16S рРНК. Изначально эти две группы обозначались как архебактерии (лат. Archaebacteria) и эубактерии (лат. Eubacteria) и рассматривались как царства или подцарства, которые Вёзе и Фокс называли термином Urkingdoms. Вёзе настаивал, что эта группа прокариот есть фундаментально отличный тип жизни. Чтобы подчеркнуть это отличие, впоследствии две группы прокариот были названы археями и бактериями. В трёхдоменной системе Карла Вёзе обе эти группы и эукариоты были возведены в ранг домена. Этот термин был предложен Вёзе в 1990 году для обозначения самого верхнего ранга в классификации организмов, включающей одно или несколько царств.
В первое время к новому домену причисляли только метаногенные микроорганизмы. Считалось, что археи населяют только места с экстремальными условиями: горячие источники, солёные озёра. Однако к концу XX века микробиологи пришли к выводу, что археи — большая и разнообразная группа организмов, широко распространённая в природе. Многие виды архей населяют вполне обычные среды обитания, например, почвы или воды океана. Такая переоценка была вызвана применением метода полимеразной цепной реакции для идентификации прокариот в образцах воды и почвы по их нуклеиновым кислотам. Данный метод позволяет выявлять и идентифицировать организмы, которые по тем или иным причинам не культивируются в лабораторных условиях.
Происхождение и эволюция
Хотя возможные окаменелости прокариотических клеток датированы возрастом в 3,5 млрд лет, большинство прокариот не имеет характерных морфологических особенностей, и поэтому окаменелые формы нельзя определённо идентифицировать именно как останки архей. В то же время химические остатки уникальных для архей липидов более информативны, так как эти соединения у других организмов не встречаются. В некоторых публикациях указывается, что останки липидов архей или эукариот присутствуют в породах возрастом 2,7 млрд лет, однако достоверность этих данных остаётся под сомнением. Эти липиды обнаружены в докембрийских формациях. Древнейшие из подобных остатков найдены в на западе Гренландии, где находятся самые старые на Земле осадочные породы, сформировавшиеся 3,8 млрд лет назад. Археи могут быть древнейшими живыми существами, населяющими Землю.
Вёзе утверждал, что археи, бактерии и эукариоты представляют собой три раздельные линии, рано отделившиеся от общей предковой группы организмов. Возможно, это произошло ещё до клеточной эволюции, когда отсутствие типичной клеточной мембраны давало возможности к неограниченному горизонтальному переносу генов, и предки трёх доменов различались между собой по фиксируемым комплектам генов. Не исключено, что последний общий предок архей и бактерий был термофилом, это даёт основания предположить, что низкие температуры были «экстремальной средой» для архей, и организмы, приспособившиеся к ним, появились только позже. Сейчас археи и бактерии связаны между собой не больше, чем с эукариотами, и термин «прокариоты» обозначает лишь «не эукариоты», что ограничивает его применимость.
Сравнительная характеристика архей и других доменов
В приведённой таблице показаны некоторые черты архей, свойственные и не свойственные другим доменам. Многие из этих свойств также обсуждаются ниже.
Свойственно археям и бактериям | Свойственно археям и эукариотам | Свойственно только археям |
---|---|---|
Нет оформленного ядра и мембранных органелл | Нет пептидогликана (муреина) | Структура клеточной стенки (к примеру, клеточные стенки некоторых архей содержат ) |
Кольцевая хромосома | ДНК связана с гистонами | В клеточной мембране присутствуют липиды, содержащие простую эфирную связь |
Гены объединены в опероны | Трансляция начинается с метионина | Структура флагеллинов |
Схожие РНК-полимераза, промоторы и другие компоненты транскрипционного комплекса, есть интроны и процессинг РНК | Структура рибосом (некоторые признаки сближают с бактериями, некоторые — с эукариотами) | |
Полицистронная мРНК | Схожие репликация и репарация ДНК | Структура и метаболизм тРНК |
Размер клеток на несколько порядков меньше, чем у эукариот | Схожая АТФаза (тип V) |
Родство с другими прокариотами
Установление степени родства между тремя доменами имеет ключевое значение для понимания возникновения жизни. Большинство метаболических путей, в которых задействована большая часть генов организма, схожи у бактерий и архей, в то время как гены, отвечающие за экспрессию других генов, очень похожи у архей и эукариот. По строению клеток археи наиболее близки к грамположительным бактериям: клетка покрыта единственной плазматической мембраной, дополнительная внешняя мембрана, характерная для грамотрицательных бактерий, отсутствует, клеточные стенки различного химического состава, как правило, толстые. В филогенетическом древе, основанном на сравнительном анализе структур гомологичных генов/белков прокариот, гомологи архей наиболее близки к таковым грамположительных бактерий. В некоторых важнейших белках архей и грамположительных бактерий, таких как Hsp70 и глутаминовая синтетаза I, обнаруживаются одинаковые эволюционно консервативные вставки и делеции.
Гупта (англ. Gupta) предположил, что археи отделились от грамположительных бактерий в результате отбора по признаку устойчивости к действию антибиотиков. Это основывается на наблюдении, что археи устойчивы к огромному числу антибиотиков, в основном производимых грамположительными бактериями, и что эти антибиотики действуют главным образом на гены, которые отличают бактерий от архей. Согласно гипотезе Гупты, давление отбора в направлении формирования устойчивости к антибиотикам грамположительных бактерий в конце концов привело к существенным изменениям в структуре генов-мишеней антибиотиков у некоторых микроорганизмов, которые стали общими предками современных архей. Предполагаемая эволюция архей под действием антибиотиков и других неблагоприятных факторов также может объяснить их адаптацию к экстремальным условиям, таким как повышенные температура и кислотность, как результат поиска ниш, свободных от продуцирующих антибиотики организмов. Т. Кавалир-Смит выдвинул схожее предположение. Версия Гупты также подтверждается другими работами, изучающими родственные черты в структурах белков, и исследованиями, показавшими, что грамположительные бактерии могли быть первой ветвью, отделившейся от общего древа прокариот.
Родство с эукариотами
Эволюционное родство между археями и эукариотами остаётся неясным. Помимо сходства в структуре и функциях клеток, между ними существует сходство на генетическом уровне. Установлено, что группа архей кренархеоты стоят ближе к эукариотам, чем к другому типу архей — эвриархеотам. Кроме того, у некоторых бактерий, как обнаружены архееподобные гены, переданные путём горизонтального переноса. Наиболее распространена гипотеза, согласно которой предок эукариот рано отделился от архей, а эукариоты возникли в результате слияния археи и эубактерии, ставших цитоплазмой и ядром новой клетки. Эта гипотеза объясняет различные генетические сходства, но сталкивается с трудностями в объяснении клеточной структуры.
Строение
Форма клеток и колоний
Отдельные клетки архей достигают от 0,1 до 15 мкм в диаметре и могут иметь различную форму: шара, палочки, спирали или диска. Некоторые кренархеоты имеют другую форму, например, — неправильной дольчатой формы; — тонкой нитевидной формы и меньше 1 мкм в диаметре, а и почти идеально прямоугольные. Haloquadratum walsbyi — плоские квадратные археи, живущие в сверхсолёных водоёмах. Такие необычные формы клеток, вероятно, обеспечиваются клеточной стенкой и прокариотическим цитоскелетом. У архей обнаружены белки, родственные компонентам цитоскелета других организмов, а также показано присутствие филаментов в их клетках, однако у архей, в отличие от других организмов, эти структуры плохо изучены. У Thermoplasma и Ferroplasma клеточная стенка отсутствует, поэтому их клетки имеют неправильную форму и похожи на амёб.
Клетки некоторых видов архей могут объединяться в агрегаты и филаменты длиной до 200 мкм. Эти организмы могут формировать биоплёнки. В культурах клетки сливаются друг с другом, формируя одну крупную клетку. Археи рода образуют сложные многоклеточные колонии, в которых клетки объединены с помощью длинных, тонких, полых трубок, называемых cannulae, которые выступают над поверхностями клеток и собирают их в густое кустовидное скопление. Функции этих трубок не ясны, но, возможно, они осуществляют коммуникацию и обмен питательными веществами между соседними клетками. Существуют и многовидовые колонии, как, например, «нить жемчуга», обнаруженная в 2001 году в болоте в Германии. Круглые беловатые колонии некоторых необычных эвриархеот перемежаются тонкими нитями, которые могут достигать до 15 см в длину и состоят из особых видов бактерий.
Археи и бактерии имеют очень похожую структуру клеток, однако их состав и организация отделяют архей от бактерий. Как у бактерий, у них отсутствуют внутренние мембраны и органеллы, клеточные мембраны, как правило, ограничены клеточной стенкой, а плавание осуществляется за счёт одного или более жгутиков. Структурно археи наиболее схожи с грамположительными бактериями. Большинство имеет одну плазматическую мембрану и клеточную стенку, периплазматическое пространство отсутствует. Исключением из этого главного правила является , у которого крупное периплазматическое пространство, ограниченное наружной мембраной, содержит окружённые мембраной везикулы.
Мембраны

Молекулы, из которых построены мембраны архей, сильно отличаются от тех, которые используются в мембранах других организмов. Это указывает на то, что археи состоят лишь в отдалённом родстве с бактериями и эукариотами. У всех живых организмов клеточные мембраны построены из фосфолипидов. Молекулы фосфолипидов состоят из двух частей: гидрофильной полярной, состоящей из фосфатов, и гидрофобной неполярной, состоящей из липидов. Эти компоненты объединены через остаток глицерина. В воде молекулы фосфолипидов кластеризуются, при этом фосфатные «головки» оказываются обращёнными к воде, а липидные «хвосты» — обращёнными от неё и спрятанными внутрь кластера. Главная составляющая мембраны — два слоя таких фосфолипидов, называемые липидным бислоем.
Эти фосфолипиды у архей обладают четырьмя необычными чертами:
- У бактерий и эукариот мембраны состоят главным образом из глицерин-сложноэфирных липидов, тогда как у архей они сложены из глицерин-эфирных липидов. Различается тип связи между остатками липидов и глицерина. Связи двух типов обозначены жёлтым на схеме справа. В сложноэфирных липидах связь сложноэфирная, а в эфирных — эфирная. Эфирные связи химически более стойкие, чем сложноэфирные. Эта стабильность помогает археям выживать при высоких температурах, а также в сильнокислых и сильнощелочных средах. Бактерии и эукариоты содержат некоторое количество эфирных липидов, но по сравнению с археями они не являются главной составляющей мембран.
- Имеется отличие в стереохимии — у архей асимметрический центр глицериновой составляющей имеет L-конфигурацию, а не D-, как у других организмов. Поэтому для синтеза фосфолипидов археи используют совершенно другие ферменты, чем бактерии и эукариоты. Такие ферменты появились очень рано в истории жизни, что указывает на то, что археи рано отделились от двух других доменов.
- Липидные «хвосты» архей химически отличны от таковых у других организмов. Основу липидов архей составляет изопреноидная боковая цепь, и их липиды представляют собой длинные цепи с множеством побочных ветвей, иногда даже с циклопропановыми и циклогексановыми кольцами. Хотя изопреноиды играют важную роль в биохимии многих организмов, только археи используют их для создания фосфолипидов. Предполагают, что эти разветвлённые цепи, как и эфирные связи, служат для приспособления к обитанию при высоких температурах. Установлено, что изопреноидные мембраны сохраняют в широком диапазоне температур (0—100 °C) жидкокристаллическое состояние, что необходимо для их нормального биологического функционирования. Проницаемость таких мембран для ионов и низкомолекулярных органических веществ также мало изменяется с повышением температуры, в отличие от мембран из «обычных» липидов, у которых она резко возрастает.
- У некоторых архей липидный бислой заменяется монослоем. Фактически при этом липидные «хвосты» двух разных фосфолипидных молекул сливаются с образованием одной молекулы с двумя полярными головками. Эти слияния делают мембрану более стойкой и лучше приспособленной для суровых условий. К примеру, ферроплазма имеет липиды этого типа, и они помогают ей выживать в сильнокислых условиях.
Клеточная стенка
Большинство архей (но не Thermoplasma и Ferroplasma) обладают клеточной стенкой. У большей части из них она сформирована молекулами поверхностных белков, образующих наружный S-слой. S-слой представляет собой жёсткую сетку из белковых молекул, покрывающих клетку снаружи, подобно кольчуге. Этот слой защищает клетку от физических и химических воздействий, а также предотвращает контакт макромолекул с клеточной мембраной. В отличие от бактерий, клеточная стенка архей не содержит пептидогликан. Метанобактерии (лат. Methanobacteriales) имеют клеточные стенки, содержащие , который напоминает пептидогликан эубактерий по морфологии, функции и физической структуре, но отличен по химической: в нём нет остатков D-аминокислот и N-ацетилмурамовой кислоты.
Жгутики
Жгутик архей иногда называют археллум. Жгутики архей работают так же, как и у бактерий: их длинные нити приводятся в движение вращательным механизмом в основании жгутика. Этот механизм работает за счёт трансмембранного протонного градиента. Тем не менее жгутики архей значительно отличаются от бактериальных по строению и способу сборки. Два типа жгутиков развились из разных предковых структур. Бактериальный жгутик и система секреции III типа имели общую предковую структуру, а архейный жгутик произошёл от бактериальных пилей IV типа. Жгутик бактерий полый и собирается из субъединиц, которые проходят вверх по центральной поре к концу жгутика. Жгутики же архей строятся путём добавления субъединиц в их основание. Кроме того, в отличие от бактериальных жгутиков, в жгутики архей входит несколько видов флагеллинов.
Метаболизм
Археи демонстрируют огромное разнообразие химических реакций, протекающих в их клетках в процессе метаболизма, а также источников энергии. Эти реакции классифицируются по группам питания в зависимости от источников энергии и углерода. Некоторые археи получают энергию из неорганических соединений, таких как сера или аммиак (они являются литотрофами). К ним относятся нитрифицирующие археи, метаногены и анаэробные метаноокислители. В окислительно-восстановительных реакциях одно соединение отдаёт электроны другому, а выделяющаяся при этом энергия служит топливом для осуществления различных клеточных процессов. Соединение, отдающее электроны, называется донором, а принимающее — акцептором. Выделяющаяся энергия идёт на образование АТФ путём хемиосмоса. В сущности, это основной процесс, протекающий в митохондриях эукариотических клеток.
Другие группы архей используют в качестве источника энергии солнечный свет (их называют фототрофами). Однако ни один из этих организмов не образует кислород в процессе фотосинтеза. Многие базовые метаболические процессы являются общими для всех форм жизни, например, археи используют модифицированный вариант гликолиза (путь Энтнера-Дудорова), а также полный или частичный цикл Кребса (трикарбоновых кислот). Это, вероятно, отражает раннее возникновение этих путей в истории жизни и их высокую эффективность.
Тип питания | Источник энергии | Источник углерода | Примеры |
---|---|---|---|
Фототрофы | Солнечный свет | Органические соединения | Halobacteria |
Литотрофы | Неорганические соединения | Органические соединения или фиксация углерода | , Methanobacteria, |
Органотрофы | Органические соединения | Органические соединения или фиксация углерода | , , Methanosarcinales |
Некоторые эвриархеоты являются метаногенами и обитают в анаэробных средах, таких как болота. Такой тип метаболизма появился рано, и возможно даже, что первый свободноживущий организм был метаногеном. Обычная для этих организмов биохимическая реакция представляет собой окисление водорода с использованием углекислого газа в качестве акцептора электронов. Для осуществления метаногенеза необходимо множество различных коферментов, уникальных для этих архей, таких как кофермент М и метанофуран. Некоторые органические соединения, такие как спирты, уксусная и муравьиная кислоты, могут использоваться метаногенами в качестве альтернативных акцепторов электронов. Подобные реакции протекают у архей, живущих в пищеварительном тракте. У ацидотрофных архей уксусная кислота распадается непосредственно на метан и углекислый газ. Такие ацидотрофные археи относятся к отряду Methanosarcinales. Они являются важной составляющей сообществ микроорганизмов, продуцирующих биогаз.
Другие археи используют атмосферный углекислый газ как источник углерода благодаря процессу фиксации углерода (то есть являются автотрофами). Этот процесс включает в себя либо сильно изменённый цикл Кальвина, либо метаболический путь, известный как 3-гидроксилпропионат/4-гидроксибутиратный цикл. Кренархеоты также используют обратный цикл Кребса, а эвриархеоты — восстановительный ацетил-СоА процесс. Фиксация углерода осуществляется за счёт энергии, получаемой из неорганических соединений. Ни один известный вид архей не фотосинтезирует. Источники энергии, которые используют археи, чрезвычайно разнообразны, начиная от окисления аммиака до окисления сероводорода или элементарной серы, проводимого , при этом в качестве акцепторов электронов могут использоваться кислород или ионы металлов.

Фототрофные археи используют солнечный свет для получения химической энергии в виде АТФ. У Halobacteria активируемые светом ионные насосы как бактериородопсин и создают ионный градиент путём выкачивания ионов из клетки через плазматическую мембрану. Запасённая в этом электрохимическом градиенте энергия преобразуется в АТФ с помощью АТФ-синтазы. Этот процесс представляет собой форму фотофосфорилирования. Способность этих насосов переносить ионы через мембраны при освещении обусловлена изменениями, которые происходят в структуре ретинолового кофактора, скрытого в центре белка, под действием света.
Генетика
Как правило, археи имеют одиночную кольцевую хромосому, размер которой может достигать 5 751 492 пар нуклеотидов у Methanosarcina acetivorans, обладающей самым большим известным геномом среди архей. Одну десятую размера этого генома составляет геном с 490 885 парами нуклеотидов у Nanoarchaeum equitans, имеющего самый маленький известный геном среди архей; он содержит лишь 537 генов, кодирующих белки. Также у архей обнаружены более мелкие независимые молекулы ДНК, так называемые плазмиды. Возможно, плазмиды могут передаваться между клетками при физическом контакте, в ходе процесса сходного с конъюгацией бактерий.

Археи могут поражаться вирусами, содержащими двухцепочечную ДНК. Вирусы архей часто неродственны другим группам вирусов и имеют различные необычные формы, включая бутылки, крючки и капли. Эти вирусы были тщательно изучены на термофилах, в основном отрядов Sulfolobales и Thermoproteales. В 2009 году был открыт вирус, содержащий одноцепочечную ДНК и поражающий галофильные археи. Защитные реакции архей против вирусов могут включать механизм, близкий к РНК-интерференции эукариот.
Археи генетически отличны от эукариот и бактерий, причём до 15 % белков, кодируемых одним геномом археи, уникальны для этого домена, хотя функции большинства этих белков неизвестны. Большая часть уникальных белков, функция которых известна, принадлежит эвриархеотам и задействована в метаногенезе. Белки, общие для архей, бактерий и эукариот, участвуют в основных клеточных функциях и касаются в основном транскрипции, трансляции и метаболизма нуклеотидов. К другим особенностям архей можно отнести организацию генов, выполняющих связанные функции (к примеру, гены, ответственные за разные этапы одного и того же метаболического процесса), в опероны и большие отличия в строении генов тРНК и их аминоацил-тРНК синтетаз.
Транскрипция и трансляция архей больше напоминают эти процессы в клетках эукариот, чем бактерий, причём РНК-полимераза и рибосомы архей очень близки к аналогичным структурам у эукариот. Хотя у архей есть лишь один тип РНК-полимеразы, по строению и функции в транскрипции она близка к РНК-полимеразе II эукариот, при этом схожие группы белков (главные факторы транскрипции) обеспечивают связывание РНК-полимеразы с промотором гена. В то же время другие факторы транскрипции архей более близки к таковым у бактерий. Процессинг РНК у архей проще, чем у эукариот, так как большинство генов архей не содержит интронов, хотя в генах их тРНК и рРНК их достаточно много, также они присутствуют в небольшом количестве генов, кодирующих белки.
Размножение
Археи размножаются бесполым путём: бинарным или множественным делением, фрагментацией или почкованием. Мейоза не происходит, поэтому даже если представители конкретного вида архей существуют более чем в одной форме, все они имеют одинаковый генетический материал. Клеточное деление определяется клеточным циклом: после того, как хромосома реплицировалась и две дочерние хромосомы разошлись, клетка делится. Детали изучены лишь у рода , но особенности его цикла очень схожи с таковыми и у эукариот, и у бактерий. Репликация хромосом начинается с множественных точек начала репликации с помощью ДНК-полимеразы, похожей на аналогичные ферменты эукариот. Однако белки, управляющие клеточным делением, такие как FtsZ, которые формируют сжимающее кольцо вокруг клетки, и компоненты септы, проходящей через центр клетки, схожи с их бактериальными эквивалентами.
Археи не образуют споры. Некоторые виды могут претерпевать смену фенотипа и существовать как клетки нескольких различных типов, включая толстостенные клетки, устойчивые к осмотическому шоку и позволяющие археям выживать в воде с низкой концентрацией соли. Однако эти структуры не служат для размножения, а скорее помогают археям осваивать новые среды обитания.
Экология

Среды обитания
Археи живут в широком диапазоне сред обитания и являются важной частью глобальной экосистемы, могут составлять до 20 % общей биомассы. Первые открытые археи были экстремофилами. Действительно, многие археи выживают при высоких температурах, часто свыше 100 °C, и обнаружены в гейзерах, чёрных курильщиках и маслосборниках. Другие приспособились к жизни в очень холодных условиях, в сильносолёных, сильнокислых и сильнощелочных средах, а также при высоком давлении — до 700 атмосфер (барофилы). Однако среди архей есть и мезофилы, обитающие в мягких условиях, в болотистых местностях, сточных водах, океанах и почве.
Экстремофильные археи относятся к четырём главным физиологическим группам: галофилам, термофилам, ацидофилам (кислотоустойчивые) и алкалифилам (щелочеустойчивые). Эти группы нельзя рассматривать в ранге типа или как другие самостоятельные таксоны. Они не взаимоисключают друг друга, и некоторые археи относятся одновременно к нескольким группам. Тем не менее, они являются удобной стартовой точкой для классификации.
Галофилы, включая род , живут в экстремально солёных средах, таких как солёные озёра, и при минерализации больше 20—25 % превосходят по численности своих соседей-бактерий. Термофилы лучше всего растут на температурах свыше 45 °C в таких местах, как горячие источники; для гипертермофилов оптимальная температура — 80 °C и выше. Methanopyrus kandleri (штамм 116) растёт при 122 °C, рекордно высокой температуре для всех организмов.
Другие археи обитают в очень кислых или щелочных средах. Например, наиболее устойчивый ацидофил растёт при pH = 0, что эквивалентно 1,2 молярной серной кислоте.
Устойчивость к экстремальным условиям внешней среды сделала архей центральной темой в обсуждениях возможных свойств жизни на других планетах. Некоторые среды, в которых обитают экстремофилы, не сильно отличаются от таковых на Марсе, что наводит на мысль о возможном переносе таких устойчивых микроорганизмов между планетами на метеоритах.
Недавно несколько работ показали, что археи обитают не только в термофильных и мезофильных условиях, но также встречаются, иногда в большом количестве, и в местах с низкими температурами. Например, археи встречаются в холодных водах, таких как полярные моря. Ещё более важно, что огромное количество архей обнаружено повсеместно в океанах в неэкстремальных условиях в составе планктона (как часть пикопланктона). Хотя эти археи могут присутствовать в поистине колоссальном количестве (до 40 % от общей биомассы микробов), почти ни один из этих видов не был изолирован, выращен и изучен в чистой культуре. Поэтому наше понимание роли архей в экологии океана, их влияния на глобальный биогеохимический круговорот остаётся в значительной мере неполным. Некоторые морские кренархеоты способны к нитрификации, поэтому вероятно, что они оказывают влияние на океанический круговорот азота, хотя эти океанические кренархеоты могут использовать и другие источники энергии. Большое число архей также обнаружено в осадке, покрывающем океаническое дно, причём они составляют большинство живых клеток на глубине больше 1 м от уровня океанического дна.
Роль в круговороте веществ
Археи вторично используют такие элементы, как углерод, азот и серу в своих различных средах обитания. Хотя такие превращения необходимы для нормального функционирования экосистемы, археи могут также содействовать вредным изменениям, вызванным деятельностью человека, и даже вызвать загрязнение.
Археи осуществляют многие этапы круговорота азота. Это включает в себя как реакции, удаляющие азот из экосистемы, к примеру, азотное дыхание и денитрификация, так и процессы, в ходе которых поглощается азот, такие как усвоение нитратов и фиксация азота. Недавно была открыта причастность архей к окислению аммиака. Эти реакции особенно важны в океанах. Археи также играют важную роль в почвенном окислении аммиака. Они образуют нитриты, которые затем окисляются другими микробами в нитраты. Последние потребляются растениями и другими организмами.
В круговороте серы археи, живущие за счёт окисления соединений серы, получают их из каменистых пород и делают их доступными для других организмов. Однако виды, осуществляющие это, такие как , образуют серную кислоту как побочный продукт, и существование таких организмов в заброшенных шахтах может, совместно с кислотными шахтными водами, причинить вред окружающей среде.
В круговороте углерода метаногены удаляют водород и играют важную роль в разложении органической материи популяциями микроорганизмов, выступающих как разлагатели в анаэробных экосистемах, таких как илы, болота и водоочистные сооружения. Однако метан — один из самых распространённых газов в земной атмосфере, вызывающих парниковый эффект, достигая 18 % от общего объёма парниковых газов. Он в 25 раз более эффективен по способности вызывать парниковый эффект, чем углекислый газ. Метаногены (главный источник атмосферного метана) выделяют большую часть ежегодного выброса метана. Поэтому эти археи причастны к созданию парникового эффекта на Земле и глобальному потеплению.
Взаимодействие с другими организмами

Хорошо изученные отношения между археями и другими организмами — мутуализм и комменсализм. Пока не существует чётких доказательств существования патогенных или паразитических видов архей. Однако была предположена связь между некоторыми видами метаногенов и инфекциями полости рта. Кроме того, вид Nanoarchaeum equitans, возможно, является паразитом другого вида архей, поскольку он выживает и размножается только на клетках кренархеота и не приносит никакой очевидной выгоды своему хозяину. С другой стороны, архееподобные ацидофильные наноорганизмы Ричмондских рудников (ARMAN) иногда прикрепляются к клеткам других архей в биоплёнках кислых сточных вод рудников. Природа этого взаимодействия не ясна, но, в отличие от случая Nanorchaeaum—Ignicoccus, сверхмелкие клетки ARMAN всегда остаются независимыми от клеток Thermoplasmatales.
Мутуализм
Один из хорошо понятных примеров мутуализма — взаимодействие простейших и метанообразующих архей, обитающих в пищеварительном тракте животных, способных переваривать целлюлозу, таких как жвачные и термиты. В этих анаэробных условиях простейшие разлагают целлюлозу для получения энергии. В этом процессе в качестве побочного продукта освобождается водород, однако высокий его уровень сокращает получение энергии. Метаногены превращают водород в метан, и простейшие могут дальше нормально получать энергию.
В случае анаэробных простейших вроде археи живут внутри клетки простейшего и потребляют водород, образуемый в его гидрогеносомах. Археи также взаимодействуют и с более крупными организмами. Например, морская архея живёт внутри (как эндосимбионт) губки .
Комменсализм
Археи могут быть комменсалами, то есть существовать совместно с другим организмом, не принося ему ни пользы, ни вреда, но с выгодой для себя. К примеру, метаноген — наиболее типичный представитель архей в микрофлоре человека. Каждый десятый прокариот в человеческом пищеварительном тракте принадлежит к этому виду. В пищеварительном тракте термитов и человека эти метаногены в действительности могут быть мутуалистами, взаимодействующими с другими микробами пищеварительного тракта и способствующими пищеварению. Археи также взаимодействуют с другими организмами, к примеру, живут на внешней поверхности кораллов и в части почвы, прилегающей к корням растений (ризосфере).
Классификация

Классификация архей, как и прокариот в целом, быстро меняется и во многом остаётся спорной. Современные системы классификации стремятся объединить археи в группы организмов со схожими структурными свойствами и общими предками. Эти классификации основаны на анализе структуры генов рРНК для установления родственных отношений между организмами (молекулярная филогенетика). Большую часть архей, выращиваемых в лабораториях и хорошо изученных, относят к двум главным типам, кренархеоты (Crenarchaeota) и эвриархеоты (Euryarchaeota). Другие группы были выделены в порядке рабочей гипотезы. Например, довольно необычный вид Nanoarchaeum equitans, открытый в 2003 году, был выделен в самостоятельный тип Nanoarchaeota. Был также предложен новый тип Korarchaeota. Он объединяет небольшую группу термофильных видов, обладающих особенностями обоих основных типов, но более родственно близких к кренархеотам. Другие недавно открытые виды имеют лишь дальнее родство с вышеперечисленными группами, например, архейные ацидофильные наноорганизмы Ричмондских рудников (ARMAN), открытые в 2006 году и являющиеся одними из самых мелких известных на сегодняшний момент организмов.

Разделение архей на виды также спорно. В биологии вид определяется как группа близкородственных организмов. Обычный критерий, которым пользуются в подобных ситуациях — организмы одного вида могут скрещиваться друг с другом, но не с особями других видов, — в данном случае не работает, поскольку археи размножаются только бесполым путём.
Археи демонстрируют высокий уровень горизонтального переноса генов между линиями. Некоторые исследователи предполагают, что особи можно объединять в популяции, похожие на виды, при условии высокой степени схожести их геномов и редко случающегося переноса генов между организмами с менее схожими геномами, как в случае рода ферроплазма (Ferroplasma). С другой стороны, изучение рода показало существование значимой передачи генов между дальнеродственными популяциями, что ограничивает применимость этого критерия. Вторая проблема состоит в том, какое практическое значение может иметь подобное разделение на виды.
Современные данные о генетическом разнообразии архей фрагментарны, и общее число их видов не может быть оценено с какой-либо точностью. Сравнительный анализ структур 16S рРНК архей позволил предположить существование 18—23 филогенетических групп уровня типов, причём представители лишь восьми групп выращены непосредственно в лаборатории и изучены (с учётом вероятной полифилии некоторых выделяемых в данный момент типов). Многие из этих гипотетических групп известны лишь по одной последовательности рРНК, что говорит о том, что пределы разнообразия этих организмов остаются неясными. Многие бактерии также никогда не культивировались в лаборатории, что приводит к схожим проблемам при их характеристике.
По устоявшейся классификации на апрель 2021 года выделяют не менее 12 типов архей:
- Crenarchaeota Garrity and Holt 2001 — Кренархеоты — термофилы, термоацидофилы, серные анаэробные бактерии;
- Euryarchaeota Garrity and Holt 2001 — Эвриархеоты — метаногенные и галофильные археи;
- Thaumarchaeota Brochier-Armanet et al. 2008 — в основном окислители аммония, как например, морской аммоний-окислитель и аммоний-окислитель преимущественно почвенного происхождения . Недавние филогенетические исследования, основанные на сравнительном анализе структур рибосомальных белков и других важнейших генов, подтвердили существование этого типа;
- Candidatus Aigarchaeota Nunoura et al. 2011
- Candidatus Rinke et al. 2013
- Candidatus Korarchaeota Barns et al. 1996 — Корархеоты — ДНК обнаружена в геотермальных источниках США, Исландии, на рисовых полях Японии, культивируемые виды пока неизвестны;
- Candidatus Lokiarchaeota Spang et al. 2015 — наиболее известный представитель, , выделен на основании генома, собранного при метагеномном анализе образцов, полученных рядом с гидротермальными источниками в Атлантическом океане на глубине 2,35 км;
- Candidatus Nanoarchaeota Huber et al. 2002 — Наноархеоты — единственные известные представители Nanoarchaeum equitans и ;
- Candidatus Rinke et al. 2013
- Candidatus Rinke et al. 2013
- Candidatus Dombrowski et al. 2020
- Candidatus Vanwonterghem et al. 2016
Выделяют ещё несколько типов на основании данных метагеномики, в том числе:
- Thorarchaeota

Филогенетический анализ показал, что Lokiarchaeota и эукариоты образуют монофилетическую кладу — в их геномах обнаружены близкие гены, например, гены, кодирующие белки, отвечающие за изменение формы клеточной мембраны, определение формы клетки и динамический цитоскелет. Результаты этого исследования служат подтверждением так называемой двухдоменной, или , согласно которой эукариоты появились как особая группа внутри архей, близкая к Lokiarchaeota и приобретшая митохондрии в результате эндосимбиоза.
В январе 2016 года были опубликованы результаты метагеномных исследований по реконструкции геномов архей из морских осадочных отложений, которые свидетельствуют об обнаружении нового типа архей — Thorarchaeota. Организмы этой группы способны к образованию ацетата при деградации белков. Они также имеют гены, необходимые для восстановления элементарной серы и тиосульфата, поэтому эти организмы участвуют в круговороте серы.
Значение в технологии и промышленности
Экстремофильные археи, особенно устойчивые к высоким температурам или повышенной кислотности/щёлочности среды, являются источником ферментов, работающих в этих суровых условиях. Эти ферменты находят множество применений. Например, термостабильные ДНК-полимеразы, такие как Pfu ДНК-полимераза вида , полностью изменили молекулярную биологию, дав возможность использовать полимеразную цепную реакцию для простого и быстрого клонирования ДНК. В промышленности амилазы, и других видов , функционирующие при температуре свыше 100 °C, применяются при производстве продуктов питания при высоких температурах, к примеру, при производстве молока и сыворотки с низким содержанием лактозы. Ферменты этих термофильных архей остаются очень стабильными в органических растворителях, что позволяет использовать их в безопасных для окружающей среды процессах в зелёной химии для синтеза органических соединений. Их стабильность делает эти ферменты удобными для использования в структурной биологии, поэтому аналоги ферментов бактерий и эукариот, получаемые из экстремофильных архей, часто применяются в структурных исследованиях.
По сравнению с применением ферментов архей, использование самих организмов в биотехнологии развито слабо. Метанообразующие археи — важная часть водоочистных сооружений, так как они входят в сообщество микроорганизмов, осуществляющих анаэробное разложение и образование биогаза. В обогащении полезных ископаемых ацидофильные археи могут использоваться для получения металлов из руд, в том числе золота, кобальта и меди.
Археи могут дать потенциально полезные антибиотики. Пока описано мало , но предполагается, что их существует сотни, особенно много их может быть получено из родов и . Эти антибиотики по структуре отличны от бактериальных, поэтому они могут иметь другие механизмы действия. Кроме того, они могут позволить создать селектируемые маркеры для использования в молекулярной биологии архей.
Примечания
- Archaea (англ.) на сайте Национального центра биотехнологической информации (NCBI). (Дата обращения: 3 сентября 2020).
- Domain Archaea : [англ.] // [англ.]. — [нем.]. (Дата обращения: 16 мая 2021).
- Археи : [арх. 3 января 2023] / Бонч-Осмоловская Е. А. // Анкилоз — Банка. — М. : Большая российская энциклопедия, 2005. — С. 311—312. — (Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов ; 2004—2017, т. 2). — ISBN 5-85270-330-3.
- Pace N. R. Time for a change (англ.) // Nature. — 2006. — May (vol. 441, no. 7091). — P. 289. — doi:10.1038/441289a. — . — PMID 16710401.
- Archaea: The Third Domain of Life . Дата обращения: 25 июля 2012. Архивировано 30 августа 2014 года.
- Staley J. T. The bacterial species dilemma and the genomic-phylogenetic species concept (англ.) // Philos. Trans. R. Soc. Lond., B, Biol. Sci. : journal. — 2006. — Vol. 361, no. 1475. — P. 1899—1909. — doi:10.1098/rstb.2006.1914. — PMID 17062409. — PMC 1857736.
- Zuckerkandl E., Pauling L. Molecules as documents of evolutionary history (англ.) // [англ.] : journal. — 1965. — Vol. 8, no. 2. — P. 357—366. — doi:10.1016/0022-5193(65)90083-4. — PMID 5876245.
- Woese C. R., Kandler O., Wheelis M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 1990. — Vol. 87, no. 12. — P. 4576—4579. — doi:10.1073/pnas.87.12.4576. — . — PMID 2112744. — PMC 54159. Архивировано 16 октября 2019 года.
- Woese C.R., Kandler O., Wheelis M.L. Towards a Natural System of Organisms: Proposal for the Domains Archaea, Bacteria, and Eucarya // Proc. Natl. Acad. Sci. USA. — 1990. — Т. 87. — С. 4576—4579. Архивировано 9 июля 2008 года.
- DeLong E. F. Everything in moderation: archaea as 'non-extremophiles' (англ.) // Curr. Opin. Genet. Dev. : journal. — 1998. — Vol. 8, no. 6. — P. 649—654. — doi:10.1016/S0959-437X(98)80032-4. — PMID 9914204.
- Theron J., Cloete T. E. Molecular techniques for determining microbial diversity and community structure in natural environments (англ.) // [англ.] : journal. — 2000. — Vol. 26, no. 1. — P. 37—57. — doi:10.1080/10408410091154174. — PMID 10782339.
- Schmidt T. M. The maturing of microbial ecology (англ.) // [англ.] : journal. — 2006. — Vol. 9, no. 3. — P. 217—223. — PMID 17061212. Архивировано 11 сентября 2008 года.
- Schopf J. Fossil evidence of Archaean life (англ.) // Philos Trans R Soc Lond B Biol Sci : journal. — 2006. — Vol. 361, no. 1470. — P. 869—885. — doi:10.1098/rstb.2006.1834. — PMID 16754604. — PMC 1578735.
- Chappe B., Albrecht P., Michaelis W. Polar Lipids of Archaebacteria in Sediments and Petroleums (англ.) // Science : journal. — 1982. — July (vol. 217, no. 4554). — P. 65—66. — doi:10.1126/science.217.4554.65. — . — PMID 17739984.
- Brocks J. J., Logan G. A., Buick R., Summons R. E. Archean molecular fossils and the early rise of eukaryotes (англ.) // Science : journal. — 1999. — Vol. 285, no. 5430. — P. 1033—1036. — doi:10.1126/science.285.5430.1033. — PMID 10446042.
- Rasmussen B., Fletcher I. R., Brocks J. J., Kilburn M. R. Reassessing the first appearance of eukaryotes and cyanobacteria (англ.) // Nature : journal. — 2008. — October (vol. 455, no. 7216). — P. 1101—1104. — doi:10.1038/nature07381. — . — PMID 18948954.
- Hahn, Jürgen; Pat Haug. Traces of Archaebacteria in ancient sediments (англ.) // System Applied Microbiology. — 1986. — Vol. 7, no. Archaebacteria '85 Proceedings. — P. 178—183.
- Wang M., Yafremava L. S., Caetano-Anollés D., Mittenthal J. E., Caetano-Anollés G. Reductive evolution of architectural repertoires in proteomes and the birth of the tripartite world (англ.) // Genome Res. : journal. — 2007. — Vol. 17, no. 11. — P. 1572—1585. — doi:10.1101/gr.6454307. — PMID 17908824. — PMC 2045140.
- Woese C. R., Gupta R. Are archaebacteria merely derived 'prokaryotes'? (англ.) // Nature. — 1981. — Vol. 289, no. 5793. — P. 95—6. — doi:10.1038/289095a0. — . — PMID 6161309.
- Woese C. R. The universal ancestor (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 1998. — Vol. 95, no. 12. — P. 6854—6859. — doi:10.1073/pnas.95.12.6854. — . — PMID 9618502. — PMC 22660. Архивировано 18 сентября 2019 года.
- Kandler O. The early diversification of life and the origin of the three domains: A proposal. In: Wiegel J., Adams W.W., editors. Thermophiles: The keys to molecular evolution and the origin of life? Athens: Taylor and Francis, 1998: 19-31.
- Gribaldo S., Brochier-Armanet C. The origin and evolution of Archaea: a state of the art (англ.) // Philos. Trans. R. Soc. Lond., B, Biol. Sci. : journal. — 2006. — Vol. 361, no. 1470. — P. 1007—1022. — doi:10.1098/rstb.2006.1841. — PMID 16754611. — PMC 1578729. Архивировано 4 июня 2012 года. Архивированная копия . Дата обращения: 21 июля 2012. Архивировано из оригинала 4 июня 2012 года.
- Woese C. R. There must be a prokaryote somewhere: microbiology's search for itself (англ.) // [англ.] : journal. — [англ.], 1994. — 1 March (vol. 58, no. 1). — P. 1—9. — PMID 8177167. — PMC 372949. Архивировано 18 сентября 2019 года.
- Information is from Willey J.M., Sherwood L.M., Woolverton C.J. Microbiology 7th ed. (2008), Ch. 19 pp. 474—475, except where noted.
- Talbert P. B., Henikoff S. Histone variants – ancient wrap artists of the epigenome (англ.) // Nature Reviews Molecular Cell Biology : journal. — 2010. — Vol. 11. — P. 264—275. — doi:10.1038/nrm2861.
- Sandman K., Reeve J. N. Archaeal histones and the origin of the histone fold (англ.) // Curr. Opin. Microbiol : journal. — 2006. — Vol. 9. — P. 520—525. — doi:10.1016/j.mib.2006.08.003.
- у бактерий трансляция начинается с формилметионина
- Zillig W. Comparative biochemistry of Archaea and Bacteria (англ.) // Curr. Opin. Gen. Dev.. — 1991. — December (vol. 1, no. 4). — P. 544—551. — doi:10.1016/S0959-437X(05)80206-0. — PMID 1822288.
- Bell S. D., Jackson S. P. Mechanism and regulation of transcription in archaea (англ.) // Curr. Opin. Microbiol. : journal. — 2001. — April (vol. 4, no. 2). — P. 208—213. — doi:10.1016/S1369-5274(00)00190-9. — PMID 11282478.
- Reeve J. N. Archaeal chromatin and transcription (англ.) // [англ.] : journal. — [англ.], 2003. — May (vol. 48, no. 3). — P. 587—598. — PMID 12694606.
- Kelman L. M., Kelman Z. Archaea: an archetype for replication initiation studies? (англ.) // [англ.] : journal. — [англ.], 2003. — May (vol. 48, no. 3). — P. 605—615. — PMID 12694608.
- Phillips G., Chikwana V. M., Maxwell A., et al. Discovery and characterization of an amidinotransferase involved in the modification of archaeal tRNA (англ.) // J. Biol. Chem. : journal. — 2010. — April (vol. 285, no. 17). — P. 12706—12713. — doi:10.1074/jbc.M110.102236. — PMID 20129918. — PMC 2857094.
- Koonin E.V., Mushegian A.R., Galperin M.Y., Walker D.R. Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea. Mol Microbiol 1997; 25:619-637.
- Gupta R. S. Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes (англ.) // [англ.] : journal. — [англ.], 1998. — Vol. 62. — P. 1435—1491. Архивировано 15 марта 2021 года.
- Koch A.L. Were Gram-positive rods the first bacteria? Trends Microbiol 2003; 11(4):166-170.
- Gupta R. S. What are archaebacteria: life's third domain or monoderm prokaryotes related to gram-positive bacteria? A new proposal for the classification of prokaryotic organisms (англ.) // Mol. Microbiol : journal. — 1998. — Vol. 29. — P. 695—708. Архивировано 6 июля 2017 года.
- Brown J.R., Masuchi Y., Robb F.T., Doolittle W.F. Evolutionary relationships of bacterial and archaeal glutamine synthetase genes. J Mol Evol 1994; 38(6):566-576.
- Gupta, R.S.(2000) The natural evolutionary relationships among prokaryotes. Crit. Rev. Microbiol. 26: 111—131.
- Gupta R.S. Molecular Sequences and the Early History of Life. In: Sapp J., editor. Microbial Phylogeny and Evolution: Concepts and Controversies. New York: Oxford University Press, 2005: 160—183.
- Cavalier-Smith T. The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. Int J Syst Evol Microbiol 2002; 52(Pt 1):7-76.
- Valas R.E., Bourne P.E.: 2011 The origin of a derived superkingdom: how a Gram-positive bacterium crossed the desert to become an archaeon. Biol Direct 6: 16.
- Skophammer R.G., Herbold C.W., Rivera M.C., Servin J.A., Lake J.A. Evidence that the root of the tree of life is not within the Archaea. Mol Biol Evol 2006; 23(9):1648-1651.
- Lake J. A. Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences (англ.) // Nature : journal. — 1988. — January (vol. 331, no. 6152). — P. 184—186. — doi:10.1038/331184a0. — . — PMID 3340165.
- Nelson K. E., Clayton R. A., Gill S. R., ; Utterback, T.R.; Malek, J.A.; Linher, K.D.; Garrett, M.M.; Stewart, A.M.; Cotton, M.D.; Pratt, M.S.; Phillips, C.A.; Richardson, D.; Heidelberg, J.; Sutton, G.G.; Fleischmann, R.D.; Eisen, J.A.; White, O.; Salzberg, S.L.; Smith, H.O.; Venter, J.C.; Fraser, C.M. et al. Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima (англ.) // Nature : journal. — 1999. — Vol. 399, no. 6734. — P. 323—329. — doi:10.1038/20601. — . — PMID 10360571.
- Gouy M., Li W. H. Phylogenetic analysis based on rRNA sequences supports the archaebacterial rather than the eocyte tree (англ.) // Nature : journal. — 1989. — May (vol. 339, no. 6220). — P. 145—147. — doi:10.1038/339145a0. — . — PMID 2497353.
- Yutin N., Makarova K. S., Mekhedov S. L., Wolf Y.I., Koonin E.V. The deep archaeal roots of eukaryotes (англ.) // [англ.] : journal. — Oxford University Press, 2008. — May (vol. 25, no. 8). — P. 1619—1630. — doi:10.1093/molbev/msn108. — PMID 18463089. — PMC 2464739. Архивировано 3 мая 2009 года.
- Lake J. A. Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences (англ.) // Nature : journal. — 1988. — Vol. 331, no. 6152. — P. 184—186. — doi:10.1038/331184a0. — . — PMID 3340165.
- Krieg, Noel. Bergey's Manual of Systematic Bacteriology (англ.). — US: Springer, 2005. — P. 21—6. — ISBN 978-0-387-24143-2.
- Barns, Sue and Burggraf, Siegfried. (1997) Crenarchaeota Архивная копия от 2 мая 2012 на Wayback Machine. Version 01 January 1997. in The Tree of Life Web Project
- Walsby, A. E. A square bacterium (англ.) // Nature. — 1980. — Vol. 283, no. 5742. — P. 69—71. — doi:10.1038/283069a0. — .
- Hara F., Yamashiro K., Nemoto N., et al. An actin homolog of the archaeon Thermoplasma acidophilum that retains the ancient characteristics of eukaryotic actin (англ.) // [англ.] : journal. — 2007. — Vol. 189, no. 5. — P. 2039—2045. — doi:10.1128/JB.01454-06. — PMID 17189356. — PMC 1855749. Архивировано 27 мая 2020 года.
- Trent J. D., Kagawa H. K., Yaoi T., Olle E., Zaluzec N. J. Chaperonin filaments: the archaeal cytoskeleton? (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 1997. — Vol. 94, no. 10. — P. 5383—5388. — doi:10.1073/pnas.94.10.5383. — . — PMID 9144246. — PMC 24687. Архивировано 27 мая 2020 года.
- Hixon W. G., Searcy D. G. Cytoskeleton in the archaebacterium Thermoplasma acidophilum? Viscosity increase in soluble extracts (англ.) // BioSystems : journal. — 1993. — Vol. 29, no. 2—3. — P. 151—160. — doi:10.1016/0303-2647(93)90091-P. — PMID 8374067.
- Golyshina O. V., Pivovarova T. A., Karavaiko G. I., et al. Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea (англ.) // [англ.] : journal. — 2000. — 1 May (vol. 50, no. 3). — P. 997—1006. — PMID 10843038. Архивировано 13 ноября 2023 года.
- Hall-Stoodley L., Costerton J. W., Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases (англ.) // Nat. Rev. Microbiol. : journal. — 2004. — Vol. 2, no. 2. — P. 95—108. — doi:10.1038/nrmicro821. — PMID 15040259.
- Kuwabara T., Minaba M., Iwayama Y., ; Kamekura, M. et al. Thermococcus coalescens sp. nov., a cell-fusing hyperthermophilic archaeon from Suiyo Seamount (англ.) // [англ.] : journal. — 2005. — November (vol. 55, no. Pt 6). — P. 2507—2514. — doi:10.1099/ijs.0.63432-0. — PMID 16280518. (недоступная ссылка)
- Nickell S., Hegerl R., Baumeister W., Rachel R. Pyrodictium cannulae enter the periplasmic space but do not enter the cytoplasm, as revealed by cryo-electron tomography (англ.) // [англ.] : journal. — 2003. — Vol. 141, no. 1. — P. 34—42. — doi:10.1016/S1047-8477(02)00581-6. — PMID 12576018. Архивировано 27 июня 2018 года.
- Horn C., Paulmann B., Kerlen G., Junker N., Huber H. In vivo observation of cell division of anaerobic hyperthermophiles by using a high-intensity dark-field microscope (англ.) // [англ.] : journal. — 1999. — 15 August (vol. 181, no. 16). — P. 5114—5118. — PMID 10438790. — PMC 94007. Архивировано 16 октября 2019 года.
- Rudolph C., Wanner G., Huber R. Natural communities of novel archaea and bacteria growing in cold sulfurous springs with a string-of-pearls-like morphology (англ.) // [англ.] : journal. — 2001. — May (vol. 67, no. 5). — P. 2336—2344. — doi:10.1128/AEM.67.5.2336-2344.2001. — PMID 11319120. — PMC 92875.
- Thomas N. A., Bardy S. L., Jarrell K. F. The archaeal flagellum: a different kind of prokaryotic motility structure (англ.) // [англ.] : journal. — [англ.], 2001. — Vol. 25, no. 2. — P. 147—174. — doi:10.1111/j.1574-6976.2001.tb00575.x. — PMID 11250034.
- Rachel R., Wyschkony I., Riehl S., Huber H. The ultrastructure of Ignicoccus: evidence for a novel outer membrane and for intracellular vesicle budding in an archaeon (англ.) // Archaea : journal. — 2002. — March (vol. 1, no. 1). — P. 9—18. — doi:10.1155/2002/307480. — PMID 15803654. — PMC 2685547. Архивировано 24 февраля 2009 года.
- Koga Y., Morii H. Biosynthesis of ether-type polar lipids in archaea and evolutionary considerations (англ.) // [англ.] : journal. — [англ.], 2007. — Vol. 71, no. 1. — P. 97—120. — doi:10.1128/MMBR.00033-06. — PMID 17347520. — PMC 1847378. Архивировано 27 мая 2020 года.
- De Rosa M., Gambacorta A., Gliozzi A. Structure, biosynthesis, and physicochemical properties of archaebacterial lipids (англ.) // [англ.] : journal. — [англ.], 1986. — 1 March (vol. 50, no. 1). — P. 70—80. — PMID 3083222. — PMC 373054. Архивировано 16 октября 2019 года.
- Albers S. V., van de Vossenberg J. L., Driessen A. J., Konings W. N. Adaptations of the archaeal cell membrane to heat stress (англ.) // [англ.] : journal. — [англ.], 2000. — September (vol. 5). — P. D813—20. — doi:10.2741/albers. — PMID 10966867. Архивировано 27 октября 2012 года.
- Damsté J. S., Schouten S., Hopmans E. C., van Duin A. C., Geenevasen J. A. Crenarchaeol: the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota (англ.) // [англ.] : journal. — 2002. — October (vol. 43, no. 10). — P. 1641—1651. — doi:10.1194/jlr.M200148-JLR200. — PMID 12364548. Архивировано 27 мая 2020 года.
- Koga Y., Morii H. Recent advances in structural research on ether lipids from archaea including comparative and physiological aspects (англ.) // [англ.] : journal. — 2005. — November (vol. 69, no. 11). — P. 2019—2034. — doi:10.1271/bbb.69.2019. — PMID 16306681. Архивировано 31 декабря 2008 года.
- Hanford M. J., Peeples T. L. Archaeal tetraether lipids: unique structures and applications (англ.) // Appl. Biochem. Biotechnol.. — 2002. — January (vol. 97, no. 1). — P. 45—62. — doi:10.1385/ABAB:97:1:45. — PMID 11900115.
- Macalady J. L., Vestling M. M., Baumler D., Boekelheide N., Kaspar C. W., Banfield J. F. Tetraether-linked membrane monolayers in Ferroplasma spp: a key to survival in acid (англ.) // Extremophiles : journal. — 2004. — October (vol. 8, no. 5). — P. 411—419. — doi:10.1007/s00792-004-0404-5. — PMID 15258835.
- Sára M., Sleytr U. B. S-Layer proteins (англ.) // [англ.] : journal. — 2000. — Vol. 182, no. 4. — P. 859—868. — doi:10.1128/JB.182.4.859-868.2000. — PMID 10648507. — PMC 94357. Архивировано 27 мая 2020 года.
- Engelhardt H., Peters J. Structural research on surface layers: a focus on stability, surface layer homology domains, and surface layer-cell wall interactions (англ.) // [англ.] : journal. — 1998. — Vol. 124, no. 2—3. — P. 276—302. — doi:10.1006/jsbi.1998.4070. — PMID 10049812.
- Kandler, O.; König, H. Cell wall polymers in Archaea (Archaebacteria) (англ.) // Cellular and Molecular Life Sciences (CMLS). — 1998. — Vol. 54, no. 4. — P. 305—308. — doi:10.1007/s000180050156. (недоступная ссылка)
- Howland, John L. The Surprising Archaea: Discovering Another Domain of Life (англ.). — Oxford: Oxford University Press, 2000. — P. 32. — ISBN 0-19-511183-4.
- Albers Sonja-Verena, Jarrell Ken F. The archaellum: how archaea swim (англ.) // Frontiers in Microbiology. — 2015. — 27 January (vol. 6). — ISSN 1664-302X. — doi:10.3389/fmicb.2015.00023.
- Gophna U., Ron E. Z., Graur D. Bacterial type III secretion systems are ancient and evolved by multiple horizontal-transfer events (англ.) // [англ.] : journal. — Elsevier, 2003. — July (vol. 312). — P. 151—163. — doi:10.1016/S0378-1119(03)00612-7. — PMID 12909351. Архивировано 22 ноября 2017 года.
- Nguyen L., Paulsen I. T., Tchieu J., Hueck C. J., Saier M. H. Phylogenetic analyses of the constituents of Type III protein secretion systems (англ.) // J. Mol. Microbiol. Biotechnol. : journal. — 2000. — April (vol. 2, no. 2). — P. 125—144. — PMID 10939240.
- Ng S. Y., Chaban B., Jarrell K. F. Archaeal flagella, bacterial flagella and type IV pili: a comparison of genes and posttranslational modifications (англ.) // J. Mol. Microbiol. Biotechnol. : journal. — 2006. — Vol. 11, no. 3—5. — P. 167—191. — doi:10.1159/000094053. — PMID 16983194.
- Bardy S. L., Ng S. Y., Jarrell K. F. Prokaryotic motility structures (англ.) // [англ.] : journal. — [англ.], 2003. — February (vol. 149, no. Pt 2). — P. 295—304. — doi:10.1099/mic.0.25948-0. — PMID 12624192.
- Valentine D. L. Adaptations to energy stress dictate the ecology and evolution of the Archaea (англ.) // Nat. Rev. Microbiol. : journal. — 2007. — Vol. 5, no. 4. — P. 316—323. — doi:10.1038/nrmicro1619. — PMID 17334387.
- Schäfer G., Engelhard M., Müller V. Bioenergetics of the Archaea (англ.) // [англ.] : journal. — [англ.], 1999. — 1 September (vol. 63, no. 3). — P. 570—620. — PMID 10477309. — PMC 103747. Архивировано 16 октября 2019 года.
- Romano A., Conway T. Evolution of carbohydrate metabolic pathways (англ.) // Res Microbiol. — 1996. — Vol. 147, no. 6—7. — P. 448—455. — doi:10.1016/0923-2508(96)83998-2. — PMID 9084754.
- Koch A. How did bacteria come to be? (англ.) // [англ.] : journal. — Academic Press, 1998. — Vol. 40. — P. 353—399. — doi:10.1016/S0065-2911(08)60135-6. — PMID 9889982.
- DiMarco A. A., Bobik T. A., Wolfe R. S. Unusual coenzymes of methanogenesis (англ.) // [англ.] : journal. — 1990. — Vol. 59. — P. 355—394. — doi:10.1146/annurev.bi.59.070190.002035. — PMID 2115763.
- Klocke M., Nettmann E., Bergmann I., et al. Characterization of the methanogenic Archaea within two-phase biogas reactor systems operated with plant biomass (англ.) // [англ.] : journal. — 2008. — May (vol. 31, no. 3). — P. 190—205. — doi:10.1016/j.syapm.2008.02.003. — PMID 18501543.
- Mueller-Cajar O., Badger M. R. New roads lead to Rubisco in archaebacteria (англ.) // [англ.] : journal. — 2007. — August (vol. 29, no. 8). — P. 722—724. — doi:10.1002/bies.20616. — PMID 17621634.
- Berg I. A., Kockelkorn D., Buckel W., Fuchs G. A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea (англ.) // Science : journal. — 2007. — December (vol. 318, no. 5857). — P. 1782—1786. — doi:10.1126/science.1149976. — . — PMID 18079405.
- Thauer R. K. Microbiology. A fifth pathway of carbon fixation (англ.) // Science. — 2007. — December (vol. 318, no. 5857). — P. 1732—1733. — doi:10.1126/science.1152209. — PMID 18079388.
- Bryant D. A., Frigaard N. U. Prokaryotic photosynthesis and phototrophy illuminated (англ.) // [англ.] : journal. — 2006. — November (vol. 14, no. 11). — P. 488—496. — doi:10.1016/j.tim.2006.09.001. — PMID 16997562.
- Könneke M., Bernhard A. E., de la Torre J. R., Walker C. B., Waterbury J. B., Stahl D. A. Isolation of an autotrophic ammonia-oxidizing marine archaeon (англ.) // Nature : journal. — 2005. — September (vol. 437, no. 7058). — P. 543—546. — doi:10.1038/nature03911. — . — PMID 16177789.
- Francis C. A., Beman J. M., Kuypers M. M. New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation (англ.) // [англ.] : journal. — 2007. — May (vol. 1, no. 1). — P. 19—27. — doi:10.1038/ismej.2007.8. — PMID 18043610.
- Основано на PDB 1FBB Архивная копия от 3 марта 2016 на Wayback Machine. Данные опубликованы в Subramaniam S., Henderson R. Molecular mechanism of vectorial proton translocation by bacteriorhodopsin (англ.) // Nature : journal. — 2000. — August (vol. 406, no. 6796). — P. 653—657. — doi:10.1038/35020614. — PMID 10949309.
- Lanyi J. K. Bacteriorhodopsin (англ.) // Annu. Rev. Physiol.. — 2004. — Vol. 66. — P. 665—688. — doi:10.1146/annurev.physiol.66.032102.150049. — PMID 14977418.
- Galagan J. E., Nusbaum C., Roy A., ; Allen, N; Naylor, J; Stange-Thomann, N; Dearellano, K; Johnson, R; Linton, L; Mcewan, P; Mckernan, K; Talamas, J; Tirrell, A; Ye, W; Zimmer, A; Barber, RD; Cann, I; Graham, DE; Grahame, DA; Guss, AM; Hedderich, R; Ingram-Smith, C; Kuettner, HC; Krzycki, JA; Leigh, JA; Li, W; Liu, J; Mukhopadhyay, B; Reeve, JN; Smith, K; Springer, TA; Umayam, LA; White, O; White, RH; Conway De Macario, E; Ferry, JG; Jarrell, KF; Jing, H; Macario, AJ; Paulsen, I; Pritchett, M; Sowers, KR; Swanson, RV; Zinder, SH; Lander, E; Metcalf, WW; Birren, B. et al. The genome of M. acetivorans reveals extensive metabolic and physiological diversity (англ.) // Genome Res. : journal. — 2002. — April (vol. 12, no. 4). — P. 532—542. — doi:10.1101/gr.223902. — PMID 11932238. — PMC 187521.
- Waters E., ; Lin, X; Mathur, E; Ni, J; Podar, M; Richardson, T; Sutton, GG; Simon, M; Soll, D; Stetter, KO; Short, JM; Noordewier, M. et al. The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 2003. — Vol. 100, no. 22. — P. 12984—12988. — doi:10.1073/pnas.1735403100. — . — PMID 14566062. — PMC 240731. Архивировано 16 октября 2019 года.
- Schleper C., Holz I., Janekovic D., Murphy J., Zillig W. A multicopy plasmid of the extremely thermophilic archaeon Sulfolobus effects its transfer to recipients by mating (англ.) // [англ.] : journal. — 1995. — 1 August (vol. 177, no. 15). — P. 4417—4426. — PMID 7635827. — PMC 177192. Архивировано 29 мая 2012 года.
- Sota M; Top E. M. Horizontal Gene Transfer Mediated by Plasmids // Plasmids: Current Research and Future Trends (англ.). — [англ.], 2008.
- Xiang X., Chen L., Huang X., Luo Y., She Q., Huang L. Sulfolobus tengchongensis spindle-shaped virus STSV1: virus-host interactions and genomic features (англ.) // [англ.] : journal. — 2005. — Vol. 79, no. 14. — P. 8677—8686. — doi:10.1128/JVI.79.14.8677-8686.2005. — PMID 15994761. — PMC 1168784. Архивировано 16 октября 2019 года.
- Prangishvili D., Forterre P., Garrett R. A. Viruses of the Archaea: a unifying view (англ.) // Nat. Rev. Microbiol. : journal. — 2006. — Vol. 4, no. 11. — P. 837—848. — doi:10.1038/nrmicro1527. — PMID 17041631.
- Prangishvili D., Garrett R. A. Exceptionally diverse morphotypes and genomes of crenarchaeal hyperthermophilic viruses (англ.) // [англ.] : journal. — 2004. — Vol. 32, no. Pt 2. — P. 204—208. — doi:10.1042/BST0320204. — PMID 15046572. Архивировано 18 апреля 2006 года.
- Pietilä M. K., Roine E., Paulin L., Kalkkinen N., Bamford D. H. An ssDNA virus infecting archaea; A new lineage of viruses with a membrane envelope (англ.) // [англ.] : journal. — [англ.], 2009. — March (vol. 72, no. 2). — P. 307—319. — doi:10.1111/j.1365-2958.2009.06642.x. — PMID 19298373.
- Mojica F. J., Díez-Villaseñor C., García-Martínez J., Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements (англ.) // [англ.] : journal. — 2005. — Vol. 60, no. 2. — P. 174—182. — doi:10.1007/s00239-004-0046-3. — PMID 15791728.
- Makarova K. S., Grishin N. V., Shabalina S. A., Wolf Y. I., Koonin E. V. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action (англ.) // [англ.] : journal. — 2006. — Vol. 1. — P. 7. — doi:10.1186/1745-6150-1-7. — PMID 16545108. — PMC 1462988.
- Graham D. E., Overbeek R., Olsen G. J., Woese C. R. An archaeal genomic signature (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 2000. — Vol. 97, no. 7. — P. 3304—3308. — doi:10.1073/pnas.050564797. — . — PMID 10716711. — PMC 16234.
- Gaasterland T. Archaeal genomics (англ.) // Curr. Opin. Microbiol.. — 1999. — Vol. 2, no. 5. — P. 542—547. — doi:10.1016/S1369-5274(99)00014-4. — PMID 10508726.
- Allers T., Mevarech M. Archaeal genetics — the third way (англ.) // Nat. Rev. Genet. : journal. — 2005. — Vol. 6, no. 1. — P. 58—73. — doi:10.1038/nrg1504. — PMID 15630422.
- Werner F. Structure and function of archaeal RNA polymerases (англ.) // [англ.] : journal. — [англ.], 2007. — September (vol. 65, no. 6). — P. 1395—1404. — doi:10.1111/j.1365-2958.2007.05876.x. — PMID 17697097.
- Aravind L., Koonin E. V. DNA-binding proteins and evolution of transcription regulation in the archaea (англ.) // Nucleic Acids Res. : journal. — 1999. — Vol. 27, no. 23. — P. 4658—4670. — doi:10.1093/nar/27.23.4658. — PMID 10556324. — PMC 148756. Архивировано 16 октября 2019 года.
- Lykke-Andersen J., Aagaard C., Semionenkov M., Garrett R. A. Archaeal introns: splicing, intercellular mobility and evolution (англ.) // [англ.] : journal. — 1997. — September (vol. 22, no. 9). — P. 326—331. — doi:10.1016/S0968-0004(97)01113-4. — PMID 9301331.
- Watanabe Y., Yokobori S., Inaba T., et al. Introns in protein-coding genes in Archaea (англ.) // [англ.] : journal. — 2002. — January (vol. 510, no. 1—2). — P. 27—30. — doi:10.1016/S0014-5793(01)03219-7. — PMID 11755525.
- Yoshinari S., Itoh T., Hallam S. J., et al. Archaeal pre-mRNA splicing: a connection to hetero-oligomeric splicing endonuclease (англ.) // Biochem. Biophys. Res. Commun. : journal. — 2006. — August (vol. 346, no. 3). — P. 1024—1032. — doi:10.1016/j.bbrc.2006.06.011. — PMID 16781672.
- Bernander R. Archaea and the cell cycle (англ.) // [англ.] : journal. — [англ.], 1998. — Vol. 29, no. 4. — P. 955—961. — doi:10.1046/j.1365-2958.1998.00956.x. — PMID 9767564.
- Kelman L. M., Kelman Z. Multiple origins of replication in archaea (англ.) // [англ.] : journal. — 2004. — Vol. 12, no. 9. — P. 399—401. — doi:10.1016/j.tim.2004.07.001. — PMID 15337158.
- Onyenwoke R. U., Brill J. A., Farahi K., Wiegel J. Sporulation genes in members of the low G+C Gram-type-positive phylogenetic branch ( Firmicutes) (англ.) // [англ.] : journal. — 2004. — Vol. 182, no. 2—3. — P. 182—192. — doi:10.1007/s00203-004-0696-y. — PMID 15340788.
- Kostrikina N. A., Zvyagintseva I. S., Duda V. I. Cytological peculiarities of some extremely halophilic soil archaeobacteria (англ.) // [англ.] : journal. — 1991. — Vol. 156, no. 5. — P. 344—349. — doi:10.1007/BF00248708.
- DeLong E. F., Pace N. R. Environmental diversity of bacteria and archaea (англ.) // Syst. Biol. : journal. — 2001. — Vol. 50, no. 4. — P. 470—478. — doi:10.1080/106351501750435040. — PMID 12116647.
- Pikuta E. V., Hoover R. B., Tang J. Microbial extremophiles at the limits of life (англ.) // [англ.] : journal. — 2007. — Vol. 33, no. 3. — P. 183—209. — doi:10.1080/10408410701451948. — PMID 17653987.
- Madigan M. T., Martino J. M. Brock Biology of Microorganisms (англ.). — 11th. — Pearson, 2006. — P. 136. — ISBN 0-13-196893-9.
- Takai K., Nakamura K., Toki T., Tsunogai U., Miyazaki M., Miyazaki J., Hirayama H., Nakagawa S., Nunoura T., Horikoshi K. Cell proliferation at 122 °C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 2008. — Vol. 105, no. 31. — P. 10949—10954. — doi:10.1073/pnas.0712334105. — . — PMID 18664583. — PMC 2490668.
- Ciaramella M., Napoli A., Rossi M. Another extreme genome: how to live at pH 0 (англ.) // [англ.] : journal. — 2005. — February (vol. 13, no. 2). — P. 49—51. — doi:10.1016/j.tim.2004.12.001. — PMID 15680761.
- Javaux E. J. Extreme life on Earth—past, present and possibly beyond (англ.) // Res. Microbiol. : journal. — 2006. — Vol. 157, no. 1. — P. 37—48. — doi:10.1016/j.resmic.2005.07.008. — PMID 16376523.
- Nealson K. H. Post-Viking microbiology: new approaches, new data, new insights (англ.) // Orig Life Evol Biosph : journal. — 1999. — January (vol. 29, no. 1). — P. 73—93. — doi:10.1023/A:1006515817767. — PMID 11536899. Архивировано 16 октября 2019 года.
- Davies P. C. The transfer of viable microorganisms between planets (англ.) // Ciba Found. Symp. : journal. — 1996. — Vol. 202. — P. 304—314. — PMID 9243022.
- López-García P., López-López A., Moreira D., Rodríguez-Valera F. Diversity of free-living prokaryotes from a deep-sea site at the Antarctic Polar Front (англ.) // [англ.] : journal. — 2001. — July (vol. 36, no. 2—3). — P. 193—202. — PMID 11451524.
- Karner M. B., DeLong E. F., Karl D. M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean (англ.) // Nature : journal. — 2001. — Vol. 409, no. 6819. — P. 507—510. — doi:10.1038/35054051. — PMID 11206545.
- Giovannoni S. J., Stingl U. Molecular diversity and ecology of microbial plankton (англ.) // Nature : journal. — 2005. — Vol. 427, no. 7057. — P. 343—348. — doi:10.1038/nature04158. — . — PMID 16163344.
- DeLong E. F., Karl D. M. Genomic perspectives in microbial oceanography (англ.) // Nature. — 2005. — September (vol. 437, no. 7057). — P. 336—342. — doi:10.1038/nature04157. — . — PMID 16163343.
- Konneke M., Bernhard A. E., de la Torre J. R., Walker C. B., Waterbury J. B., Stahl DA. Isolation of an autotrophic ammonia-oxidizing marine archaeon (англ.) // Nature : journal. — 2005. — Vol. 437, no. 7057. — P. 543—546. — doi:10.1038/nature03911. — . — PMID 16177789.
- Agogué H., Maaike B., Dinasquet J., Herndl GJ.; Agogué, H; Brink, M; Dinasquet, J; Herndl, G.J. Major gradients in putatively nitrifying and non-nitrifying Archaea in the deep North Atlantic (англ.) // Nature : journal. — 2008. — Vol. 456, no. 7223. — P. 788—791. — doi:10.1038/nature07535. — . — PMID 19037244.
- Teske A., Sørensen K. B. Uncultured archaea in deep marine subsurface sediments: have we caught them all? (англ.) // [англ.] : journal. — 2008. — January (vol. 2, no. 1). — P. 3—18. — doi:10.1038/ismej.2007.90. — PMID 18180743.
- Lipp J. S., Morono Y., Inagaki F., Hinrichs K. U. Significant contribution of Archaea to extant biomass in marine subsurface sediments (англ.) // Nature : journal. — 2008. — July (vol. 454, no. 7207). — P. 991—994. — doi:10.1038/nature07174. — . — PMID 18641632.
- Cabello P., Roldán M. D., Moreno-Vivián C. Nitrate reduction and the nitrogen cycle in archaea (англ.) // [англ.] : journal. — [англ.], 2004. — November (vol. 150, no. Pt 11). — P. 3527—3546. — doi:10.1099/mic.0.27303-0. — PMID 15528644. Архивировано 7 июня 2011 года.
- Mehta M. P., Baross J. A. Nitrogen fixation at 92 degrees C by a hydrothermal vent archaeon (англ.) // Science : journal. — 2006. — December (vol. 314, no. 5806). — P. 1783—1786. — doi:10.1126/science.1134772. — . — PMID 17170307.
- Coolen M. J., Abbas B., van Bleijswijk J., et al. Putative ammonia-oxidizing Crenarchaeota in suboxic waters of the Black Sea: a basin-wide ecological study using 16S ribosomal and functional genes and membrane lipids (англ.) // Environ. Microbiol. : journal. — 2007. — April (vol. 9, no. 4). — P. 1001—1016. — doi:10.1111/j.1462-2920.2006.01227.x. — PMID 17359272.
- Leininger S., Urich T., Schloter M., et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils (англ.) // Nature : journal. — 2006. — August (vol. 442, no. 7104). — P. 806—809. — doi:10.1038/nature04983. — . — PMID 16915287.
- Baker, B. J.; Banfield, J. F. Microbial communities in acid mine drainage (англ.) // [англ.] : journal. — 2003. — Vol. 44, no. 2. — P. 139—152. — doi:10.1016/S0168-6496(03)00028-X. — PMID 19719632. (недоступная ссылка)
- Schimel J. Playing scales in the methane cycle: from microbial ecology to the globe (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 2004. — August (vol. 101, no. 34). — P. 12400—12401. — doi:10.1073/pnas.0405075101. — . — PMID 15314221. — PMC 515073. Архивировано 16 октября 2019 года.
- EDGAR 3.2 Fast Track 2000 (англ.). Дата обращения: 2 января 2025. Архивировано из оригинала 21 мая 2008 года.
- Annual Greenhouse Gas Index (AGGI) Indicates Sharp Rise in Carbon Dioxide and Methane in 2007 (англ.) (23 апреля 2008). Дата обращения: 2 января 2025. Архивировано из оригинала 14 мая 2008 года.
- Trace Gases: Current Observations, Trends, and Budgets (англ.). Climate Change 2001. United Nations Environment Programme. Дата обращения: 2 января 2025. Архивировано из оригинала 16 марта 2002 года.
- Eckburg P., Lepp P., Relman D. Archaea and their potential role in human disease (англ.) // [англ.] : journal. — 2003. — Vol. 71, no. 2. — P. 591—596. — doi:10.1128/IAI.71.2.591-596.2003. — PMID 12540534. — PMC 145348.
- Cavicchioli R., Curmi P., Saunders N., Thomas T. Pathogenic archaea: do they exist? (англ.) // [англ.] : journal. — 2003. — Vol. 25, no. 11. — P. 1119—1128. — doi:10.1002/bies.10354. — PMID 14579252.
- Lepp P., Brinig M., Ouverney C., Palm K., Armitage G., Relman D. Methanogenic Archaea and human periodontal disease (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 2004. — Vol. 101, no. 16. — P. 6176—6181. — doi:10.1073/pnas.0308766101. — . — PMID 15067114. — PMC 395942.
- Vianna M. E., Conrads G., Gomes B. P., Horz H. P. Identification and quantification of archaea involved in primary endodontic infections (англ.) // J. Clin. Microbiol. : journal. — 2006. — April (vol. 44, no. 4). — P. 1274—1282. — doi:10.1128/JCM.44.4.1274-1282.2006. — PMID 16597851. — PMC 1448633. Архивировано 16 октября 2019 года.
- Waters E., Hohn M. J., Ahel I., ; Lin, X; Mathur, E; Ni, J; Podar, M; Richardson, T; Sutton, GG; Simon, M; Soll, D; Stetter, KO; Short, JM; Noordewier, M. et al. The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 2003. — October (vol. 100, no. 22). — P. 12984—12988. — doi:10.1073/pnas.1735403100. — . — PMID 14566062. — PMC 240731. Архивировано 16 октября 2019 года.
- Jahn U., Gallenberger M., Paper W., et al. Nanoarchaeum equitans and Ignicoccus hospitalis: new insights into a unique, intimate association of two archaea (англ.) // [англ.] : journal. — 2008. — March (vol. 190, no. 5). — P. 1743—1750. — doi:10.1128/JB.01731-07. — PMID 18165302. — PMC 2258681. Архивировано 27 мая 2020 года.
- рус. Архееподобные ацидофильные наноорганизмы Ричмондских рудников
- Baker B. J., Comolli L. R., Dick G. J., Hauser L. J., Hyatt D., Dill B. D., Land M. L., VerBerkmoes N. C., Hettich R. L., Banfield J. F. Enigmatic, ultrasmall, uncultivated Archaeaa (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 2010. — May (vol. 107, no. 19). — P. 8806—8811. — doi:10.1073/pnas.0914470107. — PMID 20421484. — PMC 2889320. Архивировано 10 февраля 2021 года.
- Chaban B., Ng S. Y., Jarrell K. F. Archaeal habitats—from the extreme to the ordinary (англ.) // [англ.] : journal. — [англ.], 2006. — February (vol. 52, no. 2). — P. 73—116. — doi:10.1139/w05-147. — PMID 16541146.
- Schink B. Energetics of syntrophic cooperation in methanogenic degradation (англ.) // [англ.] : journal. — [англ.], 1997. — June (vol. 61, no. 2). — P. 262—280. — PMID 9184013. — PMC 232610.
- Lange, M; Lange, M.; Westermann, P; Westermann, P.; Ahring, BK; Ahring, B. K. Archaea in protozoa and metazoa (англ.) // [англ.] : journal. — Springer, 2005. — Vol. 66, no. 5. — P. 465—474. — doi:10.1007/s00253-004-1790-4. — PMID 15630514.
- van Hoek A. H., van Alen T. A., Sprakel V. S., et al. Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates (англ.) // [англ.] : journal. — Oxford University Press, 2000. — 1 February (vol. 17, no. 2). — P. 251—258. — PMID 10677847. Архивировано 16 октября 2019 года.
- Preston, C. M.; Wu, K. Y.; Molinski, T. F.; Delong, E. F. A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 1996. — Vol. 93, no. 13. — P. 6241—6246. — doi:10.1073/pnas.93.13.6241. — . — PMID 8692799. — PMC 39006.
- Eckburg P. B., Bik E. M., Bernstein C. N., et al. Diversity of the human intestinal microbial flora (англ.) // Science. — 2005. — June (vol. 308, no. 5728). — P. 1635—1638. — doi:10.1126/science.1110591. — . — PMID 15831718. — PMC 1395357.
- Samuel B. S., Gordon J. I. A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 2006. — June (vol. 103, no. 26). — P. 10011—10016. — doi:10.1073/pnas.0602187103. — . — PMID 16782812. — PMC 1479766.
- Wegley, L; Wegley, L.; Yu; Yu, Y.; Breitbart; Breitbart, M.; Casas; Casas, V.; Kline; Kline, D. I.; Rohwer; Rohwer, F. Coral-associated Archaea (англ.) // [англ.] : journal. — 2004. — Vol. 273. — P. 89—96. — doi:10.3354/meps273089. Архивировано 11 сентября 2008 года.
- Chelius M. K., Triplett E. W. The Diversity of Archaea and Bacteria in Association with the Roots of Zea mays L (англ.) // Microb. Ecol. : journal. — 2001. — April (vol. 41, no. 3). — P. 252—263. — doi:10.1007/s002480000087. — PMID 11391463.
- Simon H. M., Dodsworth J. A., Goodman R. M. Crenarchaeota colonize terrestrial plant roots (англ.) // Environ. Microbiol.. — 2000. — October (vol. 2, no. 5). — P. 495—505. — doi:10.1046/j.1462-2920.2000.00131.x. — PMID 11233158.
- Gevers D., Dawyndt P., Vandamme P., et al. Stepping stones towards a new prokaryotic taxonomy (англ.) // Philos. Trans. R. Soc. Lond., B, Biol. Sci. : journal. — 2006. — Vol. 361, no. 1475. — P. 1911—1916. — doi:10.1098/rstb.2006.1915. — PMID 17062410. — PMC 1764938. Архивировано 20 декабря 2012 года.
- Robertson C. E., Harris J. K., Spear J. R., Pace N. R. Phylogenetic diversity and ecology of environmental Archaea (англ.) // Curr. Opin. Microbiol. : journal. — 2005. — Vol. 8, no. 6. — P. 638—642. — doi:10.1016/j.mib.2005.10.003. — PMID 16236543.
- Huber H., Hohn M. J., Rachel R., Fuchs T., Wimmer V. C., Stetter K. O. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont (англ.) // Nature : journal. — 2002. — Vol. 417, no. 6884. — P. 27—28. — doi:10.1038/417063a. — PMID 11986665.
- Barns S. M., Delwiche C. F., Palmer J. D., Pace N. R. Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 1996. — Vol. 93, no. 17. — P. 9188—9193. — doi:10.1073/pnas.93.17.9188. — . — PMID 8799176. — PMC 38617. Архивировано 8 мая 2020 года.
- Elkins J. G., Podar M., Graham D. E., ; Goltsman, E; Barry, K; Koonin, EV; Hugenholtz, P; Kyrpides, N; Wanner, G; Richardson, P; Keller, M; Stetter, K.O. et al. A korarchaeal genome reveals insights into the evolution of the Archaea (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 2008. — June (vol. 105, no. 23). — P. 8102—8107. — doi:10.1073/pnas.0801980105. — . — PMID 18535141. — PMC 2430366. Архивировано 27 мая 2020 года.
- Baker B. J., Tyson G. W., Webb R. I., Flanagan J., Hugenholtz P. and Banfield J. F. Lineages of acidophilic Archaea revealed by community genomic analysis. Science (англ.) // Science : journal. — 2006. — Vol. 314, no. 6884. — P. 1933—1935. — doi:10.1126/science.1132690. — . — PMID 17185602.
- Baker B. J., Comolli L. R., Dick G. J., et al. Enigmatic, ultrasmall, uncultivated Archaea (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 2010. — May (vol. 107, no. 19). — P. 8806—8811. — doi:10.1073/pnas.0914470107. — . — PMID 20421484. — PMC 2889320.
- de Queiroz K. Ernst Mayr and the modern concept of species (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 2005. — Vol. 102, no. Suppl 1. — P. 6600—6607. — doi:10.1073/pnas.0502030102. — . — PMID 15851674. — PMC 1131873. Архивировано 16 октября 2019 года.
- Eppley J. M., Tyson G. W., Getz W. M., Banfield J. F. Genetic exchange across a species boundary in the archaeal genus ferroplasma (англ.) // Genetics : journal. — 2007. — Vol. 177, no. 1. — P. 407—416. — doi:10.1534/genetics.107.072892. — PMID 17603112. — PMC 2013692. Архивировано 16 октября 2019 года.
- Papke R. T., Zhaxybayeva O., Feil E. J., Sommerfeld K., Muise D., Doolittle W. F. Searching for species in haloarchaea (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 2007. — Vol. 104, no. 35. — P. 14092—14097. — doi:10.1073/pnas.0706358104. — . — PMID 17715057. — PMC 1955782. Архивировано 16 октября 2019 года.
- Kunin V., Goldovsky L., Darzentas N., Ouzounis C. A. The net of life: reconstructing the microbial phylogenetic network (англ.) // Genome Res. : journal. — 2005. — Vol. 15, no. 7. — P. 954—959. — doi:10.1101/gr.3666505. — PMID 15965028. — PMC 1172039. Архивировано 16 октября 2019 года.
- Hugenholtz P. Exploring prokaryotic diversity in the genomic era (англ.) // [англ.]. — 2002. — Vol. 3, no. 2. — P. REVIEWS0003. — doi:10.1186/gb-2002-3-2-reviews0003. — PMID 11864374. — PMC 139013. Архивировано 15 марта 2020 года.
- Rappé M. S., Giovannoni S. J. The uncultured microbial majority (англ.) // Annu. Rev. Microbiol.. — 2003. — Vol. 57. — P. 369—394. — doi:10.1146/annurev.micro.57.030502.090759. — PMID 14527284.
- Морозова О. В. Загадки архей и их фагов // Вестник ВОГиС. — 2005. — Т. 9, № 1. — С. 55—66.
- Spang A., Hatzenpichler R., Brochier-Armanet C., Rattei T., Tischler P., Spieck E., Streit W., Stahl D. A., Wagner M., Schleper C. Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota (англ.) // [англ.] : journal. — 2010. — Vol. 18, no. 8. — P. 331—340. — PMID 20598889. Архивировано 2 июня 2013 года.
- Spang A., Saw J. H., Jørgensen S. L., Zaremba-Niedzwiedzka K., Martijn J., Lind A. E., van Eijk R., Schleper C., Guy L., Ettema T. J. Complex archaea that bridge the gap between prokaryotes and eukaryotes. (англ.) // Nature. — 2015. — doi:10.1038/nature14447. — PMID 25945739.
- Seitz K. W., Lazar C. S., Hinrichs K. U., Teske A. P., Baker B. J. Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction. (англ.) // The ISME journal. — 2016. — Vol. 10, no. 7. — P. 1696—1705. — doi:10.1038/ismej.2015.233. — PMID 26824177.
- Breithaupt H. The hunt for living gold. The search for organisms in extreme environments yields useful enzymes for industry (англ.) // [англ.] : journal. — 2001. — Vol. 2, no. 11. — P. 968—971. — doi:10.1093/embo-reports/kve238. — PMID 11713183. — PMC 1084137.
- Egorova K., Antranikian G. Industrial relevance of thermophilic Archaea (англ.) // Curr. Opin. Microbiol.. — 2005. — Vol. 8, no. 6. — P. 649—655. — doi:10.1016/j.mib.2005.10.015. — PMID 16257257.
- Synowiecki J., Grzybowska B., Zdziebło A. Sources, properties and suitability of new thermostable enzymes in food processing (англ.) // [англ.] : journal. — 2006. — Vol. 46, no. 3. — P. 197—205. — doi:10.1080/10408690590957296. — PMID 16527752.
- Jenney F. E., Adams M. W. The impact of extremophiles on structural genomics (and vice versa) (англ.) // Extremophiles : journal. — 2008. — January (vol. 12, no. 1). — P. 39—50. — doi:10.1007/s00792-007-0087-9. — PMID 17563834.
- Schiraldi C., Giuliano M., De Rosa M. Perspectives on biotechnological applications of archaea (англ.) // Archaea : journal. — 2002. — Vol. 1, no. 2. — P. 75—86. — doi:10.1155/2002/436561. — PMID 15803645. — PMC 2685559. Архивировано 26 августа 2013 года.
- Norris P. R., Burton N. P., Foulis N. A. Acidophiles in bioreactor mineral processing (англ.) // Extremophiles. — 2000. — Vol. 4, no. 2. — P. 71—6. — doi:10.1007/s007920050139. — PMID 10805560.
- O'Connor E. M., Shand R. F. Halocins and sulfolobicins: the emerging story of archaeal protein and peptide antibiotics (англ.) // J. Ind. Microbiol. Biotechnol. : journal. — 2002. — January (vol. 28, no. 1). — P. 23—31. — doi:10.1038/sj/jim/7000190. — PMID 11938468.
- Shand R. F.; Leyva K. J. Archaeal Antimicrobials: An Undiscovered Country // Archaea: New Models for Prokaryotic Biology (англ.) / Blum P (ed.). — [англ.], 2008. — ISBN 978-1-904455-27-1.
Литература
- Воробьева Л. В. Археи: Учебное пособие для вузов. — М.: Академкнига, 2007. — 447 с.
- Громов Б. В. Удивительный мир архей // СОЖ. — 1997. — № 4. — С. 23—26.
- Морозова О. В. Загадки архей и их фагов // Вестник ВОГиС. — 2005. — Том 9. — № 1. — С. 55—66
- Thomas Cavalier-Smith. Cell evolution and Earth history: stasis and revolution. — 2006.
Ссылки
- Волкова, Ольга. Закинули археи эволюционный невод и вытянули... // Сайт Biomolecula.ru (22 января 2015). Дата обращения: 5 апреля 2018.
- Старокадомский, Пётр. Карл Вёзе (1928–2012) . // Сайт Biomolecula.ru (7 февраля 2013). Дата обращения: 5 апреля 2018.
- Панов, Андрей. Как составлялся геном эукариот: эндосимбиоз VS. непрерывный горизонтальный перенос . // Сайт Biomolecula.ru (22 сентября 2015). Дата обращения: 5 апреля 2018.
- Конышев, Илья. Археи «хамят» и помогают . // Сайт Biomolecula.ru (3 сентября 2015). Дата обращения: 2 января 2025.
- Кондратенко, Юлия. Между бактериями и археями, окисляющими метан, обнаружена «электропроводка» . // Сайт Biomolecula.ru (22 декабря 2015). Дата обращения: 5 апреля 2018.
Эта статья входит в число избранных статей русскоязычного раздела Википедии. |
Автор: www.NiNa.Az
Дата публикации:
Википедия, чтение, книга, библиотека, поиск, нажмите, истории, книги, статьи, wikipedia, учить, информация, история, скачать, скачать бесплатно, mp3, видео, mp4, 3gp, jpg, jpeg, gif, png, картинка, музыка, песня, фильм, игра, игры, мобильный, телефон, Android, iOS, apple, мобильный телефон, Samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Сеть, компьютер
Dlya termina Arhej sm takzhe drugie znacheniya Arhe i v edinstvennom chisle arhe ya ot lat Archaea ot dr grech ἀrxaῖos izvechnyj drevnij pervozdannyj staryj domen zhivyh organizmov po tryohdomennoj sisteme Karla Vyoze naryadu s bakteriyami i eukariotami Arhei predstavlyayut soboj odnokletochnye mikroorganizmy ne imeyushie yadra a takzhe kakih libo membrannyh organell ArheiHalobacteria shtamm NRC 1 kazhdaya kletka dlinoj okolo 5 mkmNauchnaya klassifikaciyaDomen ArheiMezhdunarodnoe nauchnoe nazvanieArchaea Woese angl and angl 1990Sinonimypo dannym NCBI Archaebacteria Woeseand Fox 1977 Mendosicutes MetabacteriaTipyCrenarchaeota Krenarheoty Euryarchaeota Evriarheoty Thaumarchaeota Candidatus Aigarchaeota Candidatus Candidatus Korarchaeota Korarheoty Candidatus Lokiarchaeota Candidatus Nanoarchaeota Nanoarheoty Candidatus Candidatus Candidatus Candidatusi drugie vklyuchayaCandidatus ThorarchaeotaSistematika v VikividahIzobrazheniya na VikiskladeITIS 935939NCBI 2157EOL 7920Proslushat vvedenie v statyu source source noiconAudiozapis sozdana na osnove versii stati ot 4 oktyabrya 2012 goda Spisok audiostatej Ranee arhei obedinyali s bakteriyami v obshuyu gruppu nazyvaemuyu prokarioty ili carstvo Drobyanki lat Monera i oni nazyvalis arhebakterii odnako sejchas takaya klassifikaciya schitaetsya ustarevshej ustanovleno chto arhei imeyut svoyu nezavisimuyu evolyucionnuyu istoriyu i harakterizuyutsya mnogimi biohimicheskimi osobennostyami otlichayushimi ih ot drugih form zhizni Sejchas arhei podrazdelyayut na bolee chem 7 tipov Iz nih naibolee izucheny krenarheoty Crenarchaeota i evriarheoty Euryarchaeota Klassificirovat arhei po prezhnemu slozhno tak kak podavlyayushee bolshinstvo iz nih nikogda ne vyrashivalis v laboratornyh usloviyah i identificirovalis tolko po analizu nukleinovyh kislot iz prob poluchennyh iz mest ih obitaniya Arhei i bakterii ochen pohozhi po razmeru i forme kletok hotya nekotorye arhei imeyut dovolno neobychnuyu formu naprimer kletki Haloquadratum walsbyi ploskie i kvadratnye Nesmotrya na vneshnee shodstvo s bakteriyami nekotorye geny i metabolicheskie puti arhej sblizhayut ih s eukariotami v chastnosti fermenty kataliziruyushie processy transkripcii i translyacii Drugie aspekty biohimii arhej unikalny k primeru prisutstvie v kletochnyh membranah lipidov soderzhashih prostuyu efirnuyu svyaz Bolshaya chast arhej hemoavtotrofy Oni ispolzuyut znachitelno bolshe istochnikov energii chem eukarioty nachinaya ot obyknovennyh organicheskih soedinenij takih kak sahara i zakanchivaya ammiakom ionami metallov i dazhe vodorodom Soleustojchivye arhei galoarhei Haloarchaea ispolzuyut v kachestve istochnika energii solnechnyj svet drugie vidy arhej fiksiruyut uglerod odnako v otlichie ot rastenij i cianobakterij sinezelyonyh vodoroslej ni odin vid arhej ne delaet i to i drugoe odnovremenno Razmnozhenie u arhej bespoloe binarnoe delenie fragmentaciya i pochkovanie V otlichie ot bakterij i eukariot ni odin izvestnyj vid arhej ne formiruet spor Iznachalno arhej schitali ekstremofilami zhivushimi v surovyh usloviyah goryachih istochnikah solyonyh ozyorah odnako potom ih nashli i v bolee privychnyh mestah vklyuchaya pochvu okeany bolota i tolstuyu kishku cheloveka Arhej osobenno mnogo v okeanah i vozmozhno planktonnye arhei samaya mnogochislennaya gruppa nyne zhivushih organizmov Arhei priznany vazhnoj sostavlyayushej zhizni na Zemle Oni igrayut rol v krugovorotah ugleroda i azota Ni odin iz izvestnyh predstavitelej arhej ne yavlyaetsya ni parazitom za isklyucheniem nanoarheot yavlyayushihsya parazitami drugih arhej ni patogennym organizmom odnako oni chasto byvayut mutualistami i kommensalami Nekotorye predstaviteli yavlyayutsya metanogenami i obitayut v pishevaritelnom trakte cheloveka i zhvachnyh gde oni pomogayut osushestvlyat pishevarenie Metanogeny ispolzuyutsya v proizvodstve biogaza i pri ochistke kanalizacionnyh stochnyh vod a fermenty ekstremofilnyh mikroorganizmov sohranyayushie aktivnost pri vysokih temperaturah i v kontakte s organicheskimi rastvoritelyami nahodyat svoyo primenenie v biotehnologii Istoriya otkrytiyaVpervye arhei byli obnaruzheny v ekstremalnyh mestah obitaniya goryachih vulkanicheskih istochnikah Pervye predstaviteli gruppy obnaruzheny v razlichnyh ekstremalnyh sredah obitaniya naprimer geotermalnyh istochnikah Na protyazhenii bolshej chasti XX veka prokarioty schitalis edinoj gruppoj i klassificirovalis po biohimicheskim morfologicheskim i metabolicheskim osobennostyam K primeru mikrobiologi pytalis klassificirovat mikroorganizmy v zavisimosti ot formy kletok detalej stroeniya kletochnoj stenki i potreblyaemyh mikroorganizmami veshestv V 1965 godu bylo predlozheno ustanavlivat stepen rodstva raznyh prokariot na osnovanii shodstva stroeniya ih genov Etot podhod filogenetika v nashi dni yavlyaetsya osnovnym Vpervye arhei byli vydeleny v kachestve otdelnoj gruppy prokariot na filogeneticheskom dreve v 1977 godu Karlom Vyoze i Dzhordzhem Edvardom Foksom pri sravnitelnom analize 16S rRNK Iznachalno eti dve gruppy oboznachalis kak arhebakterii lat Archaebacteria i eubakterii lat Eubacteria i rassmatrivalis kak carstva ili podcarstva kotorye Vyoze i Foks nazyvali terminom Urkingdoms Vyoze nastaival chto eta gruppa prokariot est fundamentalno otlichnyj tip zhizni Chtoby podcherknut eto otlichie vposledstvii dve gruppy prokariot byli nazvany arheyami i bakteriyami V tryohdomennoj sisteme Karla Vyoze obe eti gruppy i eukarioty byli vozvedeny v rang domena Etot termin byl predlozhen Vyoze v 1990 godu dlya oboznacheniya samogo verhnego ranga v klassifikacii organizmov vklyuchayushej odno ili neskolko carstv V pervoe vremya k novomu domenu prichislyali tolko metanogennye mikroorganizmy Schitalos chto arhei naselyayut tolko mesta s ekstremalnymi usloviyami goryachie istochniki solyonye ozyora Odnako k koncu XX veka mikrobiologi prishli k vyvodu chto arhei bolshaya i raznoobraznaya gruppa organizmov shiroko rasprostranyonnaya v prirode Mnogie vidy arhej naselyayut vpolne obychnye sredy obitaniya naprimer pochvy ili vody okeana Takaya pereocenka byla vyzvana primeneniem metoda polimeraznoj cepnoj reakcii dlya identifikacii prokariot v obrazcah vody i pochvy po ih nukleinovym kislotam Dannyj metod pozvolyaet vyyavlyat i identificirovat organizmy kotorye po tem ili inym prichinam ne kultiviruyutsya v laboratornyh usloviyah Proishozhdenie i evolyuciyaHotya vozmozhnye okamenelosti prokarioticheskih kletok datirovany vozrastom v 3 5 mlrd let bolshinstvo prokariot ne imeet harakternyh morfologicheskih osobennostej i poetomu okamenelye formy nelzya opredelyonno identificirovat imenno kak ostanki arhej V to zhe vremya himicheskie ostatki unikalnyh dlya arhej lipidov bolee informativny tak kak eti soedineniya u drugih organizmov ne vstrechayutsya V nekotoryh publikaciyah ukazyvaetsya chto ostanki lipidov arhej ili eukariot prisutstvuyut v porodah vozrastom 2 7 mlrd let odnako dostovernost etih dannyh ostayotsya pod somneniem Eti lipidy obnaruzheny v dokembrijskih formaciyah Drevnejshie iz podobnyh ostatkov najdeny v na zapade Grenlandii gde nahodyatsya samye starye na Zemle osadochnye porody sformirovavshiesya 3 8 mlrd let nazad Arhei mogut byt drevnejshimi zhivymi sushestvami naselyayushimi Zemlyu Vyoze utverzhdal chto arhei bakterii i eukarioty predstavlyayut soboj tri razdelnye linii rano otdelivshiesya ot obshej predkovoj gruppy organizmov Vozmozhno eto proizoshlo eshyo do kletochnoj evolyucii kogda otsutstvie tipichnoj kletochnoj membrany davalo vozmozhnosti k neogranichennomu gorizontalnomu perenosu genov i predki tryoh domenov razlichalis mezhdu soboj po fiksiruemym komplektam genov Ne isklyucheno chto poslednij obshij predok arhej i bakterij byl termofilom eto dayot osnovaniya predpolozhit chto nizkie temperatury byli ekstremalnoj sredoj dlya arhej i organizmy prisposobivshiesya k nim poyavilis tolko pozzhe Sejchas arhei i bakterii svyazany mezhdu soboj ne bolshe chem s eukariotami i termin prokarioty oboznachaet lish ne eukarioty chto ogranichivaet ego primenimost Sravnitelnaya harakteristika arhej i drugih domenov V privedyonnoj tablice pokazany nekotorye cherty arhej svojstvennye i ne svojstvennye drugim domenam Mnogie iz etih svojstv takzhe obsuzhdayutsya nizhe Svojstvenno arheyam i bakteriyam Svojstvenno arheyam i eukariotam Svojstvenno tolko arheyamNet oformlennogo yadra i membrannyh organell Net peptidoglikana mureina Struktura kletochnoj stenki k primeru kletochnye stenki nekotoryh arhej soderzhat Kolcevaya hromosoma DNK svyazana s gistonami V kletochnoj membrane prisutstvuyut lipidy soderzhashie prostuyu efirnuyu svyazGeny obedineny v operony Translyaciya nachinaetsya s metionina Struktura flagellinovShozhie RNK polimeraza promotory i drugie komponenty transkripcionnogo kompleksa est introny i processing RNK Struktura ribosom nekotorye priznaki sblizhayut s bakteriyami nekotorye s eukariotami Policistronnaya mRNK Shozhie replikaciya i reparaciya DNK Struktura i metabolizm tRNKRazmer kletok na neskolko poryadkov menshe chem u eukariot Shozhaya ATFaza tip V Rodstvo s drugimi prokariotami Ustanovlenie stepeni rodstva mezhdu tremya domenami imeet klyuchevoe znachenie dlya ponimaniya vozniknoveniya zhizni Bolshinstvo metabolicheskih putej v kotoryh zadejstvovana bolshaya chast genov organizma shozhi u bakterij i arhej v to vremya kak geny otvechayushie za ekspressiyu drugih genov ochen pohozhi u arhej i eukariot Po stroeniyu kletok arhei naibolee blizki k grampolozhitelnym bakteriyam kletka pokryta edinstvennoj plazmaticheskoj membranoj dopolnitelnaya vneshnyaya membrana harakternaya dlya gramotricatelnyh bakterij otsutstvuet kletochnye stenki razlichnogo himicheskogo sostava kak pravilo tolstye V filogeneticheskom dreve osnovannom na sravnitelnom analize struktur gomologichnyh genov belkov prokariot gomologi arhej naibolee blizki k takovym grampolozhitelnyh bakterij V nekotoryh vazhnejshih belkah arhej i grampolozhitelnyh bakterij takih kak Hsp70 i glutaminovaya sintetaza I obnaruzhivayutsya odinakovye evolyucionno konservativnye vstavki i delecii Gupta angl Gupta predpolozhil chto arhei otdelilis ot grampolozhitelnyh bakterij v rezultate otbora po priznaku ustojchivosti k dejstviyu antibiotikov Eto osnovyvaetsya na nablyudenii chto arhei ustojchivy k ogromnomu chislu antibiotikov v osnovnom proizvodimyh grampolozhitelnymi bakteriyami i chto eti antibiotiki dejstvuyut glavnym obrazom na geny kotorye otlichayut bakterij ot arhej Soglasno gipoteze Gupty davlenie otbora v napravlenii formirovaniya ustojchivosti k antibiotikam grampolozhitelnyh bakterij v konce koncov privelo k sushestvennym izmeneniyam v strukture genov mishenej antibiotikov u nekotoryh mikroorganizmov kotorye stali obshimi predkami sovremennyh arhej Predpolagaemaya evolyuciya arhej pod dejstviem antibiotikov i drugih neblagopriyatnyh faktorov takzhe mozhet obyasnit ih adaptaciyu k ekstremalnym usloviyam takim kak povyshennye temperatura i kislotnost kak rezultat poiska nish svobodnyh ot produciruyushih antibiotiki organizmov T Kavalir Smit vydvinul shozhee predpolozhenie Versiya Gupty takzhe podtverzhdaetsya drugimi rabotami izuchayushimi rodstvennye cherty v strukturah belkov i issledovaniyami pokazavshimi chto grampolozhitelnye bakterii mogli byt pervoj vetvyu otdelivshejsya ot obshego dreva prokariot Rodstvo s eukariotami Evolyucionnoe rodstvo mezhdu arheyami i eukariotami ostayotsya neyasnym Pomimo shodstva v strukture i funkciyah kletok mezhdu nimi sushestvuet shodstvo na geneticheskom urovne Ustanovleno chto gruppa arhej krenarheoty stoyat blizhe k eukariotam chem k drugomu tipu arhej evriarheotam Krome togo u nekotoryh bakterij kak obnaruzheny arheepodobnye geny peredannye putyom gorizontalnogo perenosa Naibolee rasprostranena gipoteza soglasno kotoroj predok eukariot rano otdelilsya ot arhej a eukarioty voznikli v rezultate sliyaniya arhei i eubakterii stavshih citoplazmoj i yadrom novoj kletki Eta gipoteza obyasnyaet razlichnye geneticheskie shodstva no stalkivaetsya s trudnostyami v obyasnenii kletochnoj struktury StroenieForma kletok i kolonij Otdelnye kletki arhej dostigayut ot 0 1 do 15 mkm v diametre i mogut imet razlichnuyu formu shara palochki spirali ili diska Nekotorye krenarheoty imeyut druguyu formu naprimer nepravilnoj dolchatoj formy tonkoj nitevidnoj formy i menshe 1 mkm v diametre a i pochti idealno pryamougolnye Haloquadratum walsbyi ploskie kvadratnye arhei zhivushie v sverhsolyonyh vodoyomah Takie neobychnye formy kletok veroyatno obespechivayutsya kletochnoj stenkoj i prokarioticheskim citoskeletom U arhej obnaruzheny belki rodstvennye komponentam citoskeleta drugih organizmov a takzhe pokazano prisutstvie filamentov v ih kletkah odnako u arhej v otlichie ot drugih organizmov eti struktury ploho izucheny U Thermoplasma i Ferroplasma kletochnaya stenka otsutstvuet poetomu ih kletki imeyut nepravilnuyu formu i pohozhi na amyob Kletki nekotoryh vidov arhej mogut obedinyatsya v agregaty i filamenty dlinoj do 200 mkm Eti organizmy mogut formirovat bioplyonki V kulturah kletki slivayutsya drug s drugom formiruya odnu krupnuyu kletku Arhei roda obrazuyut slozhnye mnogokletochnye kolonii v kotoryh kletki obedineny s pomoshyu dlinnyh tonkih polyh trubok nazyvaemyh cannulae kotorye vystupayut nad poverhnostyami kletok i sobirayut ih v gustoe kustovidnoe skoplenie Funkcii etih trubok ne yasny no vozmozhno oni osushestvlyayut kommunikaciyu i obmen pitatelnymi veshestvami mezhdu sosednimi kletkami Sushestvuyut i mnogovidovye kolonii kak naprimer nit zhemchuga obnaruzhennaya v 2001 godu v bolote v Germanii Kruglye belovatye kolonii nekotoryh neobychnyh evriarheot peremezhayutsya tonkimi nityami kotorye mogut dostigat do 15 sm v dlinu i sostoyat iz osobyh vidov bakterij Arhei i bakterii imeyut ochen pohozhuyu strukturu kletok odnako ih sostav i organizaciya otdelyayut arhej ot bakterij Kak u bakterij u nih otsutstvuyut vnutrennie membrany i organelly kletochnye membrany kak pravilo ogranicheny kletochnoj stenkoj a plavanie osushestvlyaetsya za schyot odnogo ili bolee zhgutikov Strukturno arhei naibolee shozhi s grampolozhitelnymi bakteriyami Bolshinstvo imeet odnu plazmaticheskuyu membranu i kletochnuyu stenku periplazmaticheskoe prostranstvo otsutstvuet Isklyucheniem iz etogo glavnogo pravila yavlyaetsya u kotorogo krupnoe periplazmaticheskoe prostranstvo ogranichennoe naruzhnoj membranoj soderzhit okruzhyonnye membranoj vezikuly Membrany Struktura membran Vverhu fosfolipidy arhej 1 izoprenovye cepochki 2 prostye efirnye svyazi 3 ostatok L glicerina 4 fosfatnaya gruppa Poseredine bakterialnye ili eukarioticheskie fosfolipidy 5 cepochki zhirnyh kislot 6 slozhnoefirnye svyazi 7 ostatok D glicerina 8 fosfatnaya gruppa Snizu 9 lipidnyj bisloj bakterij i eukariot 10 lipidnyj monosloj nekotoryh arhej Molekuly iz kotoryh postroeny membrany arhej silno otlichayutsya ot teh kotorye ispolzuyutsya v membranah drugih organizmov Eto ukazyvaet na to chto arhei sostoyat lish v otdalyonnom rodstve s bakteriyami i eukariotami U vseh zhivyh organizmov kletochnye membrany postroeny iz fosfolipidov Molekuly fosfolipidov sostoyat iz dvuh chastej gidrofilnoj polyarnoj sostoyashej iz fosfatov i gidrofobnoj nepolyarnoj sostoyashej iz lipidov Eti komponenty obedineny cherez ostatok glicerina V vode molekuly fosfolipidov klasterizuyutsya pri etom fosfatnye golovki okazyvayutsya obrashyonnymi k vode a lipidnye hvosty obrashyonnymi ot neyo i spryatannymi vnutr klastera Glavnaya sostavlyayushaya membrany dva sloya takih fosfolipidov nazyvaemye lipidnym bisloem Eti fosfolipidy u arhej obladayut chetyrmya neobychnymi chertami U bakterij i eukariot membrany sostoyat glavnym obrazom iz glicerin slozhnoefirnyh lipidov togda kak u arhej oni slozheny iz glicerin efirnyh lipidov Razlichaetsya tip svyazi mezhdu ostatkami lipidov i glicerina Svyazi dvuh tipov oboznacheny zhyoltym na sheme sprava V slozhnoefirnyh lipidah svyaz slozhnoefirnaya a v efirnyh efirnaya Efirnye svyazi himicheski bolee stojkie chem slozhnoefirnye Eta stabilnost pomogaet arheyam vyzhivat pri vysokih temperaturah a takzhe v silnokislyh i silnoshelochnyh sredah Bakterii i eukarioty soderzhat nekotoroe kolichestvo efirnyh lipidov no po sravneniyu s arheyami oni ne yavlyayutsya glavnoj sostavlyayushej membran Imeetsya otlichie v stereohimii u arhej asimmetricheskij centr glicerinovoj sostavlyayushej imeet L konfiguraciyu a ne D kak u drugih organizmov Poetomu dlya sinteza fosfolipidov arhei ispolzuyut sovershenno drugie fermenty chem bakterii i eukarioty Takie fermenty poyavilis ochen rano v istorii zhizni chto ukazyvaet na to chto arhei rano otdelilis ot dvuh drugih domenov Lipidnye hvosty arhej himicheski otlichny ot takovyh u drugih organizmov Osnovu lipidov arhej sostavlyaet izoprenoidnaya bokovaya cep i ih lipidy predstavlyayut soboj dlinnye cepi s mnozhestvom pobochnyh vetvej inogda dazhe s ciklopropanovymi i ciklogeksanovymi kolcami Hotya izoprenoidy igrayut vazhnuyu rol v biohimii mnogih organizmov tolko arhei ispolzuyut ih dlya sozdaniya fosfolipidov Predpolagayut chto eti razvetvlyonnye cepi kak i efirnye svyazi sluzhat dlya prisposobleniya k obitaniyu pri vysokih temperaturah Ustanovleno chto izoprenoidnye membrany sohranyayut v shirokom diapazone temperatur 0 100 C zhidkokristallicheskoe sostoyanie chto neobhodimo dlya ih normalnogo biologicheskogo funkcionirovaniya Pronicaemost takih membran dlya ionov i nizkomolekulyarnyh organicheskih veshestv takzhe malo izmenyaetsya s povysheniem temperatury v otlichie ot membran iz obychnyh lipidov u kotoryh ona rezko vozrastaet U nekotoryh arhej lipidnyj bisloj zamenyaetsya monosloem Fakticheski pri etom lipidnye hvosty dvuh raznyh fosfolipidnyh molekul slivayutsya s obrazovaniem odnoj molekuly s dvumya polyarnymi golovkami Eti sliyaniya delayut membranu bolee stojkoj i luchshe prisposoblennoj dlya surovyh uslovij K primeru ferroplazma imeet lipidy etogo tipa i oni pomogayut ej vyzhivat v silnokislyh usloviyah Kletochnaya stenka Bolshinstvo arhej no ne Thermoplasma i Ferroplasma obladayut kletochnoj stenkoj U bolshej chasti iz nih ona sformirovana molekulami poverhnostnyh belkov obrazuyushih naruzhnyj S sloj S sloj predstavlyaet soboj zhyostkuyu setku iz belkovyh molekul pokryvayushih kletku snaruzhi podobno kolchuge Etot sloj zashishaet kletku ot fizicheskih i himicheskih vozdejstvij a takzhe predotvrashaet kontakt makromolekul s kletochnoj membranoj V otlichie ot bakterij kletochnaya stenka arhej ne soderzhit peptidoglikan Metanobakterii lat Methanobacteriales imeyut kletochnye stenki soderzhashie kotoryj napominaet peptidoglikan eubakterij po morfologii funkcii i fizicheskoj strukture no otlichen po himicheskoj v nyom net ostatkov D aminokislot i N acetilmuramovoj kisloty Zhgutiki Osnovnaya statya Arhellum Zhgutik arhej inogda nazyvayut arhellum Zhgutiki arhej rabotayut tak zhe kak i u bakterij ih dlinnye niti privodyatsya v dvizhenie vrashatelnym mehanizmom v osnovanii zhgutika Etot mehanizm rabotaet za schyot transmembrannogo protonnogo gradienta Tem ne menee zhgutiki arhej znachitelno otlichayutsya ot bakterialnyh po stroeniyu i sposobu sborki Dva tipa zhgutikov razvilis iz raznyh predkovyh struktur Bakterialnyj zhgutik i sistema sekrecii III tipa imeli obshuyu predkovuyu strukturu a arhejnyj zhgutik proizoshyol ot bakterialnyh pilej IV tipa Zhgutik bakterij polyj i sobiraetsya iz subedinic kotorye prohodyat vverh po centralnoj pore k koncu zhgutika Zhgutiki zhe arhej stroyatsya putyom dobavleniya subedinic v ih osnovanie Krome togo v otlichie ot bakterialnyh zhgutikov v zhgutiki arhej vhodit neskolko vidov flagellinov MetabolizmArhei demonstriruyut ogromnoe raznoobrazie himicheskih reakcij protekayushih v ih kletkah v processe metabolizma a takzhe istochnikov energii Eti reakcii klassificiruyutsya po gruppam pitaniya v zavisimosti ot istochnikov energii i ugleroda Nekotorye arhei poluchayut energiyu iz neorganicheskih soedinenij takih kak sera ili ammiak oni yavlyayutsya litotrofami K nim otnosyatsya nitrificiruyushie arhei metanogeny i anaerobnye metanookisliteli V okislitelno vosstanovitelnyh reakciyah odno soedinenie otdayot elektrony drugomu a vydelyayushayasya pri etom energiya sluzhit toplivom dlya osushestvleniya razlichnyh kletochnyh processov Soedinenie otdayushee elektrony nazyvaetsya donorom a prinimayushee akceptorom Vydelyayushayasya energiya idyot na obrazovanie ATF putyom hemiosmosa V sushnosti eto osnovnoj process protekayushij v mitohondriyah eukarioticheskih kletok Drugie gruppy arhej ispolzuyut v kachestve istochnika energii solnechnyj svet ih nazyvayut fototrofami Odnako ni odin iz etih organizmov ne obrazuet kislorod v processe fotosinteza Mnogie bazovye metabolicheskie processy yavlyayutsya obshimi dlya vseh form zhizni naprimer arhei ispolzuyut modificirovannyj variant glikoliza put Entnera Dudorova a takzhe polnyj ili chastichnyj cikl Krebsa trikarbonovyh kislot Eto veroyatno otrazhaet rannee vozniknovenie etih putej v istorii zhizni i ih vysokuyu effektivnost Tipy pitaniya arhej Tip pitaniya Istochnik energii Istochnik ugleroda PrimeryFototrofy Solnechnyj svet Organicheskie soedineniya HalobacteriaLitotrofy Neorganicheskie soedineniya Organicheskie soedineniya ili fiksaciya ugleroda Methanobacteria Organotrofy Organicheskie soedineniya Organicheskie soedineniya ili fiksaciya ugleroda Methanosarcinales Nekotorye evriarheoty yavlyayutsya metanogenami i obitayut v anaerobnyh sredah takih kak bolota Takoj tip metabolizma poyavilsya rano i vozmozhno dazhe chto pervyj svobodnozhivushij organizm byl metanogenom Obychnaya dlya etih organizmov biohimicheskaya reakciya predstavlyaet soboj okislenie vodoroda s ispolzovaniem uglekislogo gaza v kachestve akceptora elektronov Dlya osushestvleniya metanogeneza neobhodimo mnozhestvo razlichnyh kofermentov unikalnyh dlya etih arhej takih kak koferment M i metanofuran Nekotorye organicheskie soedineniya takie kak spirty uksusnaya i muravinaya kisloty mogut ispolzovatsya metanogenami v kachestve alternativnyh akceptorov elektronov Podobnye reakcii protekayut u arhej zhivushih v pishevaritelnom trakte U acidotrofnyh arhej uksusnaya kislota raspadaetsya neposredstvenno na metan i uglekislyj gaz Takie acidotrofnye arhei otnosyatsya k otryadu Methanosarcinales Oni yavlyayutsya vazhnoj sostavlyayushej soobshestv mikroorganizmov produciruyushih biogaz Drugie arhei ispolzuyut atmosfernyj uglekislyj gaz kak istochnik ugleroda blagodarya processu fiksacii ugleroda to est yavlyayutsya avtotrofami Etot process vklyuchaet v sebya libo silno izmenyonnyj cikl Kalvina libo metabolicheskij put izvestnyj kak 3 gidroksilpropionat 4 gidroksibutiratnyj cikl Krenarheoty takzhe ispolzuyut obratnyj cikl Krebsa a evriarheoty vosstanovitelnyj acetil SoA process Fiksaciya ugleroda osushestvlyaetsya za schyot energii poluchaemoj iz neorganicheskih soedinenij Ni odin izvestnyj vid arhej ne fotosinteziruet Istochniki energii kotorye ispolzuyut arhei chrezvychajno raznoobrazny nachinaya ot okisleniya ammiaka do okisleniya serovodoroda ili elementarnoj sery provodimogo pri etom v kachestve akceptorov elektronov mogut ispolzovatsya kislorod ili iony metallov Bakteriorodopsin Retinolovyj kofaktor i ostatki osushestvlyayushie perenos protonov predstavleny v vide sharo sterzhnevoj modeli Fototrofnye arhei ispolzuyut solnechnyj svet dlya polucheniya himicheskoj energii v vide ATF U Halobacteria aktiviruemye svetom ionnye nasosy kak bakteriorodopsin i sozdayut ionnyj gradient putyom vykachivaniya ionov iz kletki cherez plazmaticheskuyu membranu Zapasyonnaya v etom elektrohimicheskom gradiente energiya preobrazuetsya v ATF s pomoshyu ATF sintazy Etot process predstavlyaet soboj formu fotofosforilirovaniya Sposobnost etih nasosov perenosit iony cherez membrany pri osveshenii obuslovlena izmeneniyami kotorye proishodyat v strukture retinolovogo kofaktora skrytogo v centre belka pod dejstviem sveta GenetikaKak pravilo arhei imeyut odinochnuyu kolcevuyu hromosomu razmer kotoroj mozhet dostigat 5 751 492 par nukleotidov u Methanosarcina acetivorans obladayushej samym bolshim izvestnym genomom sredi arhej Odnu desyatuyu razmera etogo genoma sostavlyaet genom s 490 885 parami nukleotidov u Nanoarchaeum equitans imeyushego samyj malenkij izvestnyj genom sredi arhej on soderzhit lish 537 genov kodiruyushih belki Takzhe u arhej obnaruzheny bolee melkie nezavisimye molekuly DNK tak nazyvaemye plazmidy Vozmozhno plazmidy mogut peredavatsya mezhdu kletkami pri fizicheskom kontakte v hode processa shodnogo s konyugaciej bakterij porazhyonnyj DNK virusom STSV1 Dlina otrezka 1 mkm Arhei mogut porazhatsya virusami soderzhashimi dvuhcepochechnuyu DNK Virusy arhej chasto nerodstvenny drugim gruppam virusov i imeyut razlichnye neobychnye formy vklyuchaya butylki kryuchki i kapli Eti virusy byli tshatelno izucheny na termofilah v osnovnom otryadov Sulfolobales i Thermoproteales V 2009 godu byl otkryt virus soderzhashij odnocepochechnuyu DNK i porazhayushij galofilnye arhei Zashitnye reakcii arhej protiv virusov mogut vklyuchat mehanizm blizkij k RNK interferencii eukariot Arhei geneticheski otlichny ot eukariot i bakterij prichyom do 15 belkov kodiruemyh odnim genomom arhei unikalny dlya etogo domena hotya funkcii bolshinstva etih belkov neizvestny Bolshaya chast unikalnyh belkov funkciya kotoryh izvestna prinadlezhit evriarheotam i zadejstvovana v metanogeneze Belki obshie dlya arhej bakterij i eukariot uchastvuyut v osnovnyh kletochnyh funkciyah i kasayutsya v osnovnom transkripcii translyacii i metabolizma nukleotidov K drugim osobennostyam arhej mozhno otnesti organizaciyu genov vypolnyayushih svyazannye funkcii k primeru geny otvetstvennye za raznye etapy odnogo i togo zhe metabolicheskogo processa v operony i bolshie otlichiya v stroenii genov tRNK i ih aminoacil tRNK sintetaz Transkripciya i translyaciya arhej bolshe napominayut eti processy v kletkah eukariot chem bakterij prichyom RNK polimeraza i ribosomy arhej ochen blizki k analogichnym strukturam u eukariot Hotya u arhej est lish odin tip RNK polimerazy po stroeniyu i funkcii v transkripcii ona blizka k RNK polimeraze II eukariot pri etom shozhie gruppy belkov glavnye faktory transkripcii obespechivayut svyazyvanie RNK polimerazy s promotorom gena V to zhe vremya drugie faktory transkripcii arhej bolee blizki k takovym u bakterij Processing RNK u arhej proshe chem u eukariot tak kak bolshinstvo genov arhej ne soderzhit intronov hotya v genah ih tRNK i rRNK ih dostatochno mnogo takzhe oni prisutstvuyut v nebolshom kolichestve genov kodiruyushih belki RazmnozhenieArhei razmnozhayutsya bespolym putyom binarnym ili mnozhestvennym deleniem fragmentaciej ili pochkovaniem Mejoza ne proishodit poetomu dazhe esli predstaviteli konkretnogo vida arhej sushestvuyut bolee chem v odnoj forme vse oni imeyut odinakovyj geneticheskij material Kletochnoe delenie opredelyaetsya kletochnym ciklom posle togo kak hromosoma replicirovalas i dve dochernie hromosomy razoshlis kletka delitsya Detali izucheny lish u roda no osobennosti ego cikla ochen shozhi s takovymi i u eukariot i u bakterij Replikaciya hromosom nachinaetsya s mnozhestvennyh tochek nachala replikacii s pomoshyu DNK polimerazy pohozhej na analogichnye fermenty eukariot Odnako belki upravlyayushie kletochnym deleniem takie kak FtsZ kotorye formiruyut szhimayushee kolco vokrug kletki i komponenty septy prohodyashej cherez centr kletki shozhi s ih bakterialnymi ekvivalentami Arhei ne obrazuyut spory Nekotorye vidy mogut preterpevat smenu fenotipa i sushestvovat kak kletki neskolkih razlichnyh tipov vklyuchaya tolstostennye kletki ustojchivye k osmoticheskomu shoku i pozvolyayushie arheyam vyzhivat v vode s nizkoj koncentraciej soli Odnako eti struktury ne sluzhat dlya razmnozheniya a skoree pomogayut arheyam osvaivat novye sredy obitaniya EkologiyaPyatno cvetnyh termofilnyh arhej Jelloustonskij nacionalnyj park SShA Sredy obitaniya Arhei zhivut v shirokom diapazone sred obitaniya i yavlyayutsya vazhnoj chastyu globalnoj ekosistemy mogut sostavlyat do 20 obshej biomassy Pervye otkrytye arhei byli ekstremofilami Dejstvitelno mnogie arhei vyzhivayut pri vysokih temperaturah chasto svyshe 100 C i obnaruzheny v gejzerah chyornyh kurilshikah i maslosbornikah Drugie prisposobilis k zhizni v ochen holodnyh usloviyah v silnosolyonyh silnokislyh i silnoshelochnyh sredah a takzhe pri vysokom davlenii do 700 atmosfer barofily Odnako sredi arhej est i mezofily obitayushie v myagkih usloviyah v bolotistyh mestnostyah stochnyh vodah okeanah i pochve Ekstremofilnye arhei otnosyatsya k chetyryom glavnym fiziologicheskim gruppam galofilam termofilam acidofilam kislotoustojchivye i alkalifilam shelocheustojchivye Eti gruppy nelzya rassmatrivat v range tipa ili kak drugie samostoyatelnye taksony Oni ne vzaimoisklyuchayut drug druga i nekotorye arhei otnosyatsya odnovremenno k neskolkim gruppam Tem ne menee oni yavlyayutsya udobnoj startovoj tochkoj dlya klassifikacii Galofily vklyuchaya rod zhivut v ekstremalno solyonyh sredah takih kak solyonye ozyora i pri mineralizacii bolshe 20 25 prevoshodyat po chislennosti svoih sosedej bakterij Termofily luchshe vsego rastut na temperaturah svyshe 45 C v takih mestah kak goryachie istochniki dlya gipertermofilov optimalnaya temperatura 80 C i vyshe Methanopyrus kandleri shtamm 116 rastyot pri 122 C rekordno vysokoj temperature dlya vseh organizmov Drugie arhei obitayut v ochen kislyh ili shelochnyh sredah Naprimer naibolee ustojchivyj acidofil rastyot pri pH 0 chto ekvivalentno 1 2 molyarnoj sernoj kislote Ustojchivost k ekstremalnym usloviyam vneshnej sredy sdelala arhej centralnoj temoj v obsuzhdeniyah vozmozhnyh svojstv zhizni na drugih planetah Nekotorye sredy v kotoryh obitayut ekstremofily ne silno otlichayutsya ot takovyh na Marse chto navodit na mysl o vozmozhnom perenose takih ustojchivyh mikroorganizmov mezhdu planetami na meteoritah Nedavno neskolko rabot pokazali chto arhei obitayut ne tolko v termofilnyh i mezofilnyh usloviyah no takzhe vstrechayutsya inogda v bolshom kolichestve i v mestah s nizkimi temperaturami Naprimer arhei vstrechayutsya v holodnyh vodah takih kak polyarnye morya Eshyo bolee vazhno chto ogromnoe kolichestvo arhej obnaruzheno povsemestno v okeanah v neekstremalnyh usloviyah v sostave planktona kak chast pikoplanktona Hotya eti arhei mogut prisutstvovat v poistine kolossalnom kolichestve do 40 ot obshej biomassy mikrobov pochti ni odin iz etih vidov ne byl izolirovan vyrashen i izuchen v chistoj kulture Poetomu nashe ponimanie roli arhej v ekologii okeana ih vliyaniya na globalnyj biogeohimicheskij krugovorot ostayotsya v znachitelnoj mere nepolnym Nekotorye morskie krenarheoty sposobny k nitrifikacii poetomu veroyatno chto oni okazyvayut vliyanie na okeanicheskij krugovorot azota hotya eti okeanicheskie krenarheoty mogut ispolzovat i drugie istochniki energii Bolshoe chislo arhej takzhe obnaruzheno v osadke pokryvayushem okeanicheskoe dno prichyom oni sostavlyayut bolshinstvo zhivyh kletok na glubine bolshe 1 m ot urovnya okeanicheskogo dna Rol v krugovorote veshestv Arhei vtorichno ispolzuyut takie elementy kak uglerod azot i seru v svoih razlichnyh sredah obitaniya Hotya takie prevrasheniya neobhodimy dlya normalnogo funkcionirovaniya ekosistemy arhei mogut takzhe sodejstvovat vrednym izmeneniyam vyzvannym deyatelnostyu cheloveka i dazhe vyzvat zagryaznenie Arhei osushestvlyayut mnogie etapy krugovorota azota Eto vklyuchaet v sebya kak reakcii udalyayushie azot iz ekosistemy k primeru azotnoe dyhanie i denitrifikaciya tak i processy v hode kotoryh pogloshaetsya azot takie kak usvoenie nitratov i fiksaciya azota Nedavno byla otkryta prichastnost arhej k okisleniyu ammiaka Eti reakcii osobenno vazhny v okeanah Arhei takzhe igrayut vazhnuyu rol v pochvennom okislenii ammiaka Oni obrazuyut nitrity kotorye zatem okislyayutsya drugimi mikrobami v nitraty Poslednie potreblyayutsya rasteniyami i drugimi organizmami V krugovorote sery arhei zhivushie za schyot okisleniya soedinenij sery poluchayut ih iz kamenistyh porod i delayut ih dostupnymi dlya drugih organizmov Odnako vidy osushestvlyayushie eto takie kak obrazuyut sernuyu kislotu kak pobochnyj produkt i sushestvovanie takih organizmov v zabroshennyh shahtah mozhet sovmestno s kislotnymi shahtnymi vodami prichinit vred okruzhayushej srede V krugovorote ugleroda metanogeny udalyayut vodorod i igrayut vazhnuyu rol v razlozhenii organicheskoj materii populyaciyami mikroorganizmov vystupayushih kak razlagateli v anaerobnyh ekosistemah takih kak ily bolota i vodoochistnye sooruzheniya Odnako metan odin iz samyh rasprostranyonnyh gazov v zemnoj atmosfere vyzyvayushih parnikovyj effekt dostigaya 18 ot obshego obyoma parnikovyh gazov On v 25 raz bolee effektiven po sposobnosti vyzyvat parnikovyj effekt chem uglekislyj gaz Metanogeny glavnyj istochnik atmosfernogo metana vydelyayut bolshuyu chast ezhegodnogo vybrosa metana Poetomu eti arhei prichastny k sozdaniyu parnikovogo effekta na Zemle i globalnomu potepleniyu Vzaimodejstvie s drugimi organizmami Metanoobrazuyushie arhei vstupayut v simbioz s termitami Horosho izuchennye otnosheniya mezhdu arheyami i drugimi organizmami mutualizm i kommensalizm Poka ne sushestvuet chyotkih dokazatelstv sushestvovaniya patogennyh ili paraziticheskih vidov arhej Odnako byla predpolozhena svyaz mezhdu nekotorymi vidami metanogenov i infekciyami polosti rta Krome togo vid Nanoarchaeum equitans vozmozhno yavlyaetsya parazitom drugogo vida arhej poskolku on vyzhivaet i razmnozhaetsya tolko na kletkah krenarheota i ne prinosit nikakoj ochevidnoj vygody svoemu hozyainu S drugoj storony arheepodobnye acidofilnye nanoorganizmy Richmondskih rudnikov ARMAN inogda prikreplyayutsya k kletkam drugih arhej v bioplyonkah kislyh stochnyh vod rudnikov Priroda etogo vzaimodejstviya ne yasna no v otlichie ot sluchaya Nanorchaeaum Ignicoccus sverhmelkie kletki ARMAN vsegda ostayutsya nezavisimymi ot kletok Thermoplasmatales Mutualizm Odin iz horosho ponyatnyh primerov mutualizma vzaimodejstvie prostejshih i metanoobrazuyushih arhej obitayushih v pishevaritelnom trakte zhivotnyh sposobnyh perevarivat cellyulozu takih kak zhvachnye i termity V etih anaerobnyh usloviyah prostejshie razlagayut cellyulozu dlya polucheniya energii V etom processe v kachestve pobochnogo produkta osvobozhdaetsya vodorod odnako vysokij ego uroven sokrashaet poluchenie energii Metanogeny prevrashayut vodorod v metan i prostejshie mogut dalshe normalno poluchat energiyu V sluchae anaerobnyh prostejshih vrode arhei zhivut vnutri kletki prostejshego i potreblyayut vodorod obrazuemyj v ego gidrogenosomah Arhei takzhe vzaimodejstvuyut i s bolee krupnymi organizmami Naprimer morskaya arheya zhivyot vnutri kak endosimbiont gubki Kommensalizm Arhei mogut byt kommensalami to est sushestvovat sovmestno s drugim organizmom ne prinosya emu ni polzy ni vreda no s vygodoj dlya sebya K primeru metanogen naibolee tipichnyj predstavitel arhej v mikroflore cheloveka Kazhdyj desyatyj prokariot v chelovecheskom pishevaritelnom trakte prinadlezhit k etomu vidu V pishevaritelnom trakte termitov i cheloveka eti metanogeny v dejstvitelnosti mogut byt mutualistami vzaimodejstvuyushimi s drugimi mikrobami pishevaritelnogo trakta i sposobstvuyushimi pishevareniyu Arhei takzhe vzaimodejstvuyut s drugimi organizmami k primeru zhivut na vneshnej poverhnosti korallov i v chasti pochvy prilegayushej k kornyam rastenij rizosfere KlassifikaciyaFilogeneticheskoe drevo postroennoe na osnovanii analiza rRNK pokazyvaet razdelenie bakterij arhej i eukariotOsnovnaya statya Sistematika arhej Klassifikaciya arhej kak i prokariot v celom bystro menyaetsya i vo mnogom ostayotsya spornoj Sovremennye sistemy klassifikacii stremyatsya obedinit arhei v gruppy organizmov so shozhimi strukturnymi svojstvami i obshimi predkami Eti klassifikacii osnovany na analize struktury genov rRNK dlya ustanovleniya rodstvennyh otnoshenij mezhdu organizmami molekulyarnaya filogenetika Bolshuyu chast arhej vyrashivaemyh v laboratoriyah i horosho izuchennyh otnosyat k dvum glavnym tipam krenarheoty Crenarchaeota i evriarheoty Euryarchaeota Drugie gruppy byli vydeleny v poryadke rabochej gipotezy Naprimer dovolno neobychnyj vid Nanoarchaeum equitans otkrytyj v 2003 godu byl vydelen v samostoyatelnyj tip Nanoarchaeota Byl takzhe predlozhen novyj tip Korarchaeota On obedinyaet nebolshuyu gruppu termofilnyh vidov obladayushih osobennostyami oboih osnovnyh tipov no bolee rodstvenno blizkih k krenarheotam Drugie nedavno otkrytye vidy imeyut lish dalnee rodstvo s vysheperechislennymi gruppami naprimer arhejnye acidofilnye nanoorganizmy Richmondskih rudnikov ARMAN otkrytye v 2006 godu i yavlyayushiesya odnimi iz samyh melkih izvestnyh na segodnyashnij moment organizmov ARMAN novaya gruppa arhej obitayushaya v Razdelenie arhej na vidy takzhe sporno V biologii vid opredelyaetsya kak gruppa blizkorodstvennyh organizmov Obychnyj kriterij kotorym polzuyutsya v podobnyh situaciyah organizmy odnogo vida mogut skreshivatsya drug s drugom no ne s osobyami drugih vidov v dannom sluchae ne rabotaet poskolku arhei razmnozhayutsya tolko bespolym putyom Arhei demonstriruyut vysokij uroven gorizontalnogo perenosa genov mezhdu liniyami Nekotorye issledovateli predpolagayut chto osobi mozhno obedinyat v populyacii pohozhie na vidy pri uslovii vysokoj stepeni shozhesti ih genomov i redko sluchayushegosya perenosa genov mezhdu organizmami s menee shozhimi genomami kak v sluchae roda ferroplazma Ferroplasma S drugoj storony izuchenie roda pokazalo sushestvovanie znachimoj peredachi genov mezhdu dalnerodstvennymi populyaciyami chto ogranichivaet primenimost etogo kriteriya Vtoraya problema sostoit v tom kakoe prakticheskoe znachenie mozhet imet podobnoe razdelenie na vidy Sovremennye dannye o geneticheskom raznoobrazii arhej fragmentarny i obshee chislo ih vidov ne mozhet byt oceneno s kakoj libo tochnostyu Sravnitelnyj analiz struktur 16S rRNK arhej pozvolil predpolozhit sushestvovanie 18 23 filogeneticheskih grupp urovnya tipov prichyom predstaviteli lish vosmi grupp vyrasheny neposredstvenno v laboratorii i izucheny s uchyotom veroyatnoj polifilii nekotoryh vydelyaemyh v dannyj moment tipov Mnogie iz etih gipoteticheskih grupp izvestny lish po odnoj posledovatelnosti rRNK chto govorit o tom chto predely raznoobraziya etih organizmov ostayutsya neyasnymi Mnogie bakterii takzhe nikogda ne kultivirovalis v laboratorii chto privodit k shozhim problemam pri ih harakteristike Po ustoyavshejsya klassifikacii na aprel 2021 goda vydelyayut ne menee 12 tipov arhej Crenarchaeota Garrityand Holt 2001 Krenarheoty termofily termoacidofily sernye anaerobnye bakterii Euryarchaeota Garrityand Holt 2001 Evriarheoty metanogennye i galofilnye arhei Thaumarchaeota Brochier Armanet et al 2008 v osnovnom okisliteli ammoniya kak naprimer morskoj ammonij okislitel i ammonij okislitel preimushestvenno pochvennogo proishozhdeniya Nedavnie filogeneticheskie issledovaniya osnovannye na sravnitelnom analize struktur ribosomalnyh belkov i drugih vazhnejshih genov podtverdili sushestvovanie etogo tipa Candidatus Aigarchaeota Nunoura et al 2011 Candidatus Rinke et al 2013 Candidatus Korarchaeota Barns et al 1996 Korarheoty DNK obnaruzhena v geotermalnyh istochnikah SShA Islandii na risovyh polyah Yaponii kultiviruemye vidy poka neizvestny Candidatus Lokiarchaeota Spang et al 2015 naibolee izvestnyj predstavitel vydelen na osnovanii genoma sobrannogo pri metagenomnom analize obrazcov poluchennyh ryadom s gidrotermalnymi istochnikami v Atlanticheskom okeane na glubine 2 35 km Candidatus Nanoarchaeota Huber et al 2002 Nanoarheoty edinstvennye izvestnye predstaviteli Nanoarchaeum equitans i Candidatus Rinke et al 2013 Candidatus Rinke et al 2013 Candidatus Dombrowski et al 2020 Candidatus Vanwonterghem et al 2016 Vydelyayut eshyo neskolko tipov na osnovanii dannyh metagenomiki v tom chisle ThorarchaeotaKlassicheskoe tryohdomennoe derevo sleva i dvuhdomennoe ili eocitnoe sprava Filogeneticheskij analiz pokazal chto Lokiarchaeota i eukarioty obrazuyut monofileticheskuyu kladu v ih genomah obnaruzheny blizkie geny naprimer geny kodiruyushie belki otvechayushie za izmenenie formy kletochnoj membrany opredelenie formy kletki i dinamicheskij citoskelet Rezultaty etogo issledovaniya sluzhat podtverzhdeniem tak nazyvaemoj dvuhdomennoj ili soglasno kotoroj eukarioty poyavilis kak osobaya gruppa vnutri arhej blizkaya k Lokiarchaeota i priobretshaya mitohondrii v rezultate endosimbioza V yanvare 2016 goda byli opublikovany rezultaty metagenomnyh issledovanij po rekonstrukcii genomov arhej iz morskih osadochnyh otlozhenij kotorye svidetelstvuyut ob obnaruzhenii novogo tipa arhej Thorarchaeota Organizmy etoj gruppy sposobny k obrazovaniyu acetata pri degradacii belkov Oni takzhe imeyut geny neobhodimye dlya vosstanovleniya elementarnoj sery i tiosulfata poetomu eti organizmy uchastvuyut v krugovorote sery Znachenie v tehnologii i promyshlennostiEkstremofilnye arhei osobenno ustojchivye k vysokim temperaturam ili povyshennoj kislotnosti shyolochnosti sredy yavlyayutsya istochnikom fermentov rabotayushih v etih surovyh usloviyah Eti fermenty nahodyat mnozhestvo primenenij Naprimer termostabilnye DNK polimerazy takie kak Pfu DNK polimeraza vida polnostyu izmenili molekulyarnuyu biologiyu dav vozmozhnost ispolzovat polimeraznuyu cepnuyu reakciyu dlya prostogo i bystrogo klonirovaniya DNK V promyshlennosti amilazy i drugih vidov funkcioniruyushie pri temperature svyshe 100 C primenyayutsya pri proizvodstve produktov pitaniya pri vysokih temperaturah k primeru pri proizvodstve moloka i syvorotki s nizkim soderzhaniem laktozy Fermenty etih termofilnyh arhej ostayutsya ochen stabilnymi v organicheskih rastvoritelyah chto pozvolyaet ispolzovat ih v bezopasnyh dlya okruzhayushej sredy processah v zelyonoj himii dlya sinteza organicheskih soedinenij Ih stabilnost delaet eti fermenty udobnymi dlya ispolzovaniya v strukturnoj biologii poetomu analogi fermentov bakterij i eukariot poluchaemye iz ekstremofilnyh arhej chasto primenyayutsya v strukturnyh issledovaniyah Po sravneniyu s primeneniem fermentov arhej ispolzovanie samih organizmov v biotehnologii razvito slabo Metanoobrazuyushie arhei vazhnaya chast vodoochistnyh sooruzhenij tak kak oni vhodyat v soobshestvo mikroorganizmov osushestvlyayushih anaerobnoe razlozhenie i obrazovanie biogaza V obogashenii poleznyh iskopaemyh acidofilnye arhei mogut ispolzovatsya dlya polucheniya metallov iz rud v tom chisle zolota kobalta i medi Arhei mogut dat potencialno poleznye antibiotiki Poka opisano malo no predpolagaetsya chto ih sushestvuet sotni osobenno mnogo ih mozhet byt polucheno iz rodov i Eti antibiotiki po strukture otlichny ot bakterialnyh poetomu oni mogut imet drugie mehanizmy dejstviya Krome togo oni mogut pozvolit sozdat selektiruemye markery dlya ispolzovaniya v molekulyarnoj biologii arhej PrimechaniyaArchaea angl na sajte Nacionalnogo centra biotehnologicheskoj informacii NCBI Data obrasheniya 3 sentyabrya 2020 Domain Archaea angl angl nem Data obrasheniya 16 maya 2021 Arhei arh 3 yanvarya 2023 Bonch Osmolovskaya E A Ankiloz Banka M Bolshaya rossijskaya enciklopediya 2005 S 311 312 Bolshaya rossijskaya enciklopediya v 35 t gl red Yu S Osipov 2004 2017 t 2 ISBN 5 85270 330 3 Pace N R Time for a change angl Nature 2006 May vol 441 no 7091 P 289 doi 10 1038 441289a Bibcode 2006Natur 441 289P PMID 16710401 Archaea The Third Domain of Life neopr Data obrasheniya 25 iyulya 2012 Arhivirovano 30 avgusta 2014 goda Staley J T The bacterial species dilemma and the genomic phylogenetic species concept angl Philos Trans R Soc Lond B Biol Sci journal 2006 Vol 361 no 1475 P 1899 1909 doi 10 1098 rstb 2006 1914 PMID 17062409 PMC 1857736 Zuckerkandl E Pauling L Molecules as documents of evolutionary history angl angl journal 1965 Vol 8 no 2 P 357 366 doi 10 1016 0022 5193 65 90083 4 PMID 5876245 Woese C R Kandler O Wheelis M L Towards a natural system of organisms proposal for the domains Archaea Bacteria and Eucarya angl Proceedings of the National Academy of Sciences of the United States of America journal 1990 Vol 87 no 12 P 4576 4579 doi 10 1073 pnas 87 12 4576 Bibcode 1990PNAS 87 4576W PMID 2112744 PMC 54159 Arhivirovano 16 oktyabrya 2019 goda Woese C R Kandler O Wheelis M L Towards a Natural System of Organisms Proposal for the Domains Archaea Bacteria and Eucarya Proc Natl Acad Sci USA 1990 T 87 S 4576 4579 Arhivirovano 9 iyulya 2008 goda DeLong E F Everything in moderation archaea as non extremophiles angl Curr Opin Genet Dev journal 1998 Vol 8 no 6 P 649 654 doi 10 1016 S0959 437X 98 80032 4 PMID 9914204 Theron J Cloete T E Molecular techniques for determining microbial diversity and community structure in natural environments angl angl journal 2000 Vol 26 no 1 P 37 57 doi 10 1080 10408410091154174 PMID 10782339 Schmidt T M The maturing of microbial ecology angl angl journal 2006 Vol 9 no 3 P 217 223 PMID 17061212 Arhivirovano 11 sentyabrya 2008 goda Schopf J Fossil evidence of Archaean life angl Philos Trans R Soc Lond B Biol Sci journal 2006 Vol 361 no 1470 P 869 885 doi 10 1098 rstb 2006 1834 PMID 16754604 PMC 1578735 Chappe B Albrecht P Michaelis W Polar Lipids of Archaebacteria in Sediments and Petroleums angl Science journal 1982 July vol 217 no 4554 P 65 66 doi 10 1126 science 217 4554 65 Bibcode 1982Sci 217 65C PMID 17739984 Brocks J J Logan G A Buick R Summons R E Archean molecular fossils and the early rise of eukaryotes angl Science journal 1999 Vol 285 no 5430 P 1033 1036 doi 10 1126 science 285 5430 1033 PMID 10446042 Rasmussen B Fletcher I R Brocks J J Kilburn M R Reassessing the first appearance of eukaryotes and cyanobacteria angl Nature journal 2008 October vol 455 no 7216 P 1101 1104 doi 10 1038 nature07381 Bibcode 2008Natur 455 1101R PMID 18948954 Hahn Jurgen Pat Haug Traces of Archaebacteria in ancient sediments angl System Applied Microbiology 1986 Vol 7 no Archaebacteria 85 Proceedings P 178 183 Wang M Yafremava L S Caetano Anolles D Mittenthal J E Caetano Anolles G Reductive evolution of architectural repertoires in proteomes and the birth of the tripartite world angl Genome Res journal 2007 Vol 17 no 11 P 1572 1585 doi 10 1101 gr 6454307 PMID 17908824 PMC 2045140 Woese C R Gupta R Are archaebacteria merely derived prokaryotes angl Nature 1981 Vol 289 no 5793 P 95 6 doi 10 1038 289095a0 Bibcode 1981Natur 289 95W PMID 6161309 Woese C R The universal ancestor angl Proceedings of the National Academy of Sciences of the United States of America journal 1998 Vol 95 no 12 P 6854 6859 doi 10 1073 pnas 95 12 6854 Bibcode 1998PNAS 95 6854W PMID 9618502 PMC 22660 Arhivirovano 18 sentyabrya 2019 goda Kandler O The early diversification of life and the origin of the three domains A proposal In Wiegel J Adams W W editors Thermophiles The keys to molecular evolution and the origin of life Athens Taylor and Francis 1998 19 31 Gribaldo S Brochier Armanet C The origin and evolution of Archaea a state of the art angl Philos Trans R Soc Lond B Biol Sci journal 2006 Vol 361 no 1470 P 1007 1022 doi 10 1098 rstb 2006 1841 PMID 16754611 PMC 1578729 Arhivirovano 4 iyunya 2012 goda Arhivirovannaya kopiya neopr Data obrasheniya 21 iyulya 2012 Arhivirovano iz originala 4 iyunya 2012 goda Woese C R There must be a prokaryote somewhere microbiology s search for itself angl angl journal angl 1994 1 March vol 58 no 1 P 1 9 PMID 8177167 PMC 372949 Arhivirovano 18 sentyabrya 2019 goda Information is from Willey J M Sherwood L M Woolverton C J Microbiology 7th ed 2008 Ch 19 pp 474 475 except where noted Talbert P B Henikoff S Histone variants ancient wrap artists of the epigenome angl Nature Reviews Molecular Cell Biology journal 2010 Vol 11 P 264 275 doi 10 1038 nrm2861 Sandman K Reeve J N Archaeal histones and the origin of the histone fold angl Curr Opin Microbiol journal 2006 Vol 9 P 520 525 doi 10 1016 j mib 2006 08 003 u bakterij translyaciya nachinaetsya s formilmetionina Zillig W Comparative biochemistry of Archaea and Bacteria angl Curr Opin Gen Dev 1991 December vol 1 no 4 P 544 551 doi 10 1016 S0959 437X 05 80206 0 PMID 1822288 Bell S D Jackson S P Mechanism and regulation of transcription in archaea angl Curr Opin Microbiol journal 2001 April vol 4 no 2 P 208 213 doi 10 1016 S1369 5274 00 00190 9 PMID 11282478 Reeve J N Archaeal chromatin and transcription angl angl journal angl 2003 May vol 48 no 3 P 587 598 PMID 12694606 Kelman L M Kelman Z Archaea an archetype for replication initiation studies angl angl journal angl 2003 May vol 48 no 3 P 605 615 PMID 12694608 Phillips G Chikwana V M Maxwell A et al Discovery and characterization of an amidinotransferase involved in the modification of archaeal tRNA angl J Biol Chem journal 2010 April vol 285 no 17 P 12706 12713 doi 10 1074 jbc M110 102236 PMID 20129918 PMC 2857094 Koonin E V Mushegian A R Galperin M Y Walker D R Comparison of archaeal and bacterial genomes computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea Mol Microbiol 1997 25 619 637 Gupta R S Protein phylogenies and signature sequences A reappraisal of evolutionary relationships among archaebacteria eubacteria and eukaryotes angl angl journal angl 1998 Vol 62 P 1435 1491 Arhivirovano 15 marta 2021 goda Koch A L Were Gram positive rods the first bacteria Trends Microbiol 2003 11 4 166 170 Gupta R S What are archaebacteria life s third domain or monoderm prokaryotes related to gram positive bacteria A new proposal for the classification of prokaryotic organisms angl Mol Microbiol journal 1998 Vol 29 P 695 708 Arhivirovano 6 iyulya 2017 goda Brown J R Masuchi Y Robb F T Doolittle W F Evolutionary relationships of bacterial and archaeal glutamine synthetase genes J Mol Evol 1994 38 6 566 576 Gupta R S 2000 The natural evolutionary relationships among prokaryotes Crit Rev Microbiol 26 111 131 Gupta R S Molecular Sequences and the Early History of Life In Sapp J editor Microbial Phylogeny and Evolution Concepts and Controversies New York Oxford University Press 2005 160 183 Cavalier Smith T The neomuran origin of archaebacteria the negibacterial root of the universal tree and bacterial megaclassification Int J Syst Evol Microbiol 2002 52 Pt 1 7 76 Valas R E Bourne P E 2011 The origin of a derived superkingdom how a Gram positive bacterium crossed the desert to become an archaeon Biol Direct 6 16 Skophammer R G Herbold C W Rivera M C Servin J A Lake J A Evidence that the root of the tree of life is not within the Archaea Mol Biol Evol 2006 23 9 1648 1651 Lake J A Origin of the eukaryotic nucleus determined by rate invariant analysis of rRNA sequences angl Nature journal 1988 January vol 331 no 6152 P 184 186 doi 10 1038 331184a0 Bibcode 1988Natur 331 184L PMID 3340165 Nelson K E Clayton R A Gill S R Utterback T R Malek J A Linher K D Garrett M M Stewart A M Cotton M D Pratt M S Phillips C A Richardson D Heidelberg J Sutton G G Fleischmann R D Eisen J A White O Salzberg S L Smith H O Venter J C Fraser C M et al Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima angl Nature journal 1999 Vol 399 no 6734 P 323 329 doi 10 1038 20601 Bibcode 1999Natur 399 323N PMID 10360571 Gouy M Li W H Phylogenetic analysis based on rRNA sequences supports the archaebacterial rather than the eocyte tree angl Nature journal 1989 May vol 339 no 6220 P 145 147 doi 10 1038 339145a0 Bibcode 1989Natur 339 145G PMID 2497353 Yutin N Makarova K S Mekhedov S L Wolf Y I Koonin E V The deep archaeal roots of eukaryotes angl angl journal Oxford University Press 2008 May vol 25 no 8 P 1619 1630 doi 10 1093 molbev msn108 PMID 18463089 PMC 2464739 Arhivirovano 3 maya 2009 goda Lake J A Origin of the eukaryotic nucleus determined by rate invariant analysis of rRNA sequences angl Nature journal 1988 Vol 331 no 6152 P 184 186 doi 10 1038 331184a0 Bibcode 1988Natur 331 184L PMID 3340165 Krieg Noel Bergey s Manual of Systematic Bacteriology angl US Springer 2005 P 21 6 ISBN 978 0 387 24143 2 Barns Sue and Burggraf Siegfried 1997 Crenarchaeota Arhivnaya kopiya ot 2 maya 2012 na Wayback Machine Version 01 January 1997 in The Tree of Life Web Project Walsby A E A square bacterium angl Nature 1980 Vol 283 no 5742 P 69 71 doi 10 1038 283069a0 Bibcode 1980Natur 283 69W Hara F Yamashiro K Nemoto N et al An actin homolog of the archaeon Thermoplasma acidophilum that retains the ancient characteristics of eukaryotic actin angl angl journal 2007 Vol 189 no 5 P 2039 2045 doi 10 1128 JB 01454 06 PMID 17189356 PMC 1855749 Arhivirovano 27 maya 2020 goda Trent J D Kagawa H K Yaoi T Olle E Zaluzec N J Chaperonin filaments the archaeal cytoskeleton angl Proceedings of the National Academy of Sciences of the United States of America journal 1997 Vol 94 no 10 P 5383 5388 doi 10 1073 pnas 94 10 5383 Bibcode 1997PNAS 94 5383T PMID 9144246 PMC 24687 Arhivirovano 27 maya 2020 goda Hixon W G Searcy D G Cytoskeleton in the archaebacterium Thermoplasma acidophilum Viscosity increase in soluble extracts angl BioSystems journal 1993 Vol 29 no 2 3 P 151 160 doi 10 1016 0303 2647 93 90091 P PMID 8374067 Golyshina O V Pivovarova T A Karavaiko G I et al Ferroplasma acidiphilum gen nov sp nov an acidophilic autotrophic ferrous iron oxidizing cell wall lacking mesophilic member of the Ferroplasmaceae fam nov comprising a distinct lineage of the Archaea angl angl journal 2000 1 May vol 50 no 3 P 997 1006 PMID 10843038 Arhivirovano 13 noyabrya 2023 goda Hall Stoodley L Costerton J W Stoodley P Bacterial biofilms from the natural environment to infectious diseases angl Nat Rev Microbiol journal 2004 Vol 2 no 2 P 95 108 doi 10 1038 nrmicro821 PMID 15040259 Kuwabara T Minaba M Iwayama Y Kamekura M et al Thermococcus coalescens sp nov a cell fusing hyperthermophilic archaeon from Suiyo Seamount angl angl journal 2005 November vol 55 no Pt 6 P 2507 2514 doi 10 1099 ijs 0 63432 0 PMID 16280518 nedostupnaya ssylka Nickell S Hegerl R Baumeister W Rachel R Pyrodictium cannulae enter the periplasmic space but do not enter the cytoplasm as revealed by cryo electron tomography angl angl journal 2003 Vol 141 no 1 P 34 42 doi 10 1016 S1047 8477 02 00581 6 PMID 12576018 Arhivirovano 27 iyunya 2018 goda Horn C Paulmann B Kerlen G Junker N Huber H In vivo observation of cell division of anaerobic hyperthermophiles by using a high intensity dark field microscope angl angl journal 1999 15 August vol 181 no 16 P 5114 5118 PMID 10438790 PMC 94007 Arhivirovano 16 oktyabrya 2019 goda Rudolph C Wanner G Huber R Natural communities of novel archaea and bacteria growing in cold sulfurous springs with a string of pearls like morphology angl angl journal 2001 May vol 67 no 5 P 2336 2344 doi 10 1128 AEM 67 5 2336 2344 2001 PMID 11319120 PMC 92875 Thomas N A Bardy S L Jarrell K F The archaeal flagellum a different kind of prokaryotic motility structure angl angl journal angl 2001 Vol 25 no 2 P 147 174 doi 10 1111 j 1574 6976 2001 tb00575 x PMID 11250034 Rachel R Wyschkony I Riehl S Huber H The ultrastructure of Ignicoccus evidence for a novel outer membrane and for intracellular vesicle budding in an archaeon angl Archaea journal 2002 March vol 1 no 1 P 9 18 doi 10 1155 2002 307480 PMID 15803654 PMC 2685547 Arhivirovano 24 fevralya 2009 goda Koga Y Morii H Biosynthesis of ether type polar lipids in archaea and evolutionary considerations angl angl journal angl 2007 Vol 71 no 1 P 97 120 doi 10 1128 MMBR 00033 06 PMID 17347520 PMC 1847378 Arhivirovano 27 maya 2020 goda De Rosa M Gambacorta A Gliozzi A Structure biosynthesis and physicochemical properties of archaebacterial lipids angl angl journal angl 1986 1 March vol 50 no 1 P 70 80 PMID 3083222 PMC 373054 Arhivirovano 16 oktyabrya 2019 goda Albers S V van de Vossenberg J L Driessen A J Konings W N Adaptations of the archaeal cell membrane to heat stress angl angl journal angl 2000 September vol 5 P D813 20 doi 10 2741 albers PMID 10966867 Arhivirovano 27 oktyabrya 2012 goda Damste J S Schouten S Hopmans E C van Duin A C Geenevasen J A Crenarchaeol the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota angl angl journal 2002 October vol 43 no 10 P 1641 1651 doi 10 1194 jlr M200148 JLR200 PMID 12364548 Arhivirovano 27 maya 2020 goda Koga Y Morii H Recent advances in structural research on ether lipids from archaea including comparative and physiological aspects angl angl journal 2005 November vol 69 no 11 P 2019 2034 doi 10 1271 bbb 69 2019 PMID 16306681 Arhivirovano 31 dekabrya 2008 goda Hanford M J Peeples T L Archaeal tetraether lipids unique structures and applications angl Appl Biochem Biotechnol 2002 January vol 97 no 1 P 45 62 doi 10 1385 ABAB 97 1 45 PMID 11900115 Macalady J L Vestling M M Baumler D Boekelheide N Kaspar C W Banfield J F Tetraether linked membrane monolayers in Ferroplasma spp a key to survival in acid angl Extremophiles journal 2004 October vol 8 no 5 P 411 419 doi 10 1007 s00792 004 0404 5 PMID 15258835 Sara M Sleytr U B S Layer proteins angl angl journal 2000 Vol 182 no 4 P 859 868 doi 10 1128 JB 182 4 859 868 2000 PMID 10648507 PMC 94357 Arhivirovano 27 maya 2020 goda Engelhardt H Peters J Structural research on surface layers a focus on stability surface layer homology domains and surface layer cell wall interactions angl angl journal 1998 Vol 124 no 2 3 P 276 302 doi 10 1006 jsbi 1998 4070 PMID 10049812 Kandler O Konig H Cell wall polymers in Archaea Archaebacteria angl Cellular and Molecular Life Sciences CMLS 1998 Vol 54 no 4 P 305 308 doi 10 1007 s000180050156 nedostupnaya ssylka Howland John L The Surprising Archaea Discovering Another Domain of Life angl Oxford Oxford University Press 2000 P 32 ISBN 0 19 511183 4 Albers Sonja Verena Jarrell Ken F The archaellum how archaea swim angl Frontiers in Microbiology 2015 27 January vol 6 ISSN 1664 302X doi 10 3389 fmicb 2015 00023 ispravit Gophna U Ron E Z Graur D Bacterial type III secretion systems are ancient and evolved by multiple horizontal transfer events angl angl journal Elsevier 2003 July vol 312 P 151 163 doi 10 1016 S0378 1119 03 00612 7 PMID 12909351 Arhivirovano 22 noyabrya 2017 goda Nguyen L Paulsen I T Tchieu J Hueck C J Saier M H Phylogenetic analyses of the constituents of Type III protein secretion systems angl J Mol Microbiol Biotechnol journal 2000 April vol 2 no 2 P 125 144 PMID 10939240 Ng S Y Chaban B Jarrell K F Archaeal flagella bacterial flagella and type IV pili a comparison of genes and posttranslational modifications angl J Mol Microbiol Biotechnol journal 2006 Vol 11 no 3 5 P 167 191 doi 10 1159 000094053 PMID 16983194 Bardy S L Ng S Y Jarrell K F Prokaryotic motility structures angl angl journal angl 2003 February vol 149 no Pt 2 P 295 304 doi 10 1099 mic 0 25948 0 PMID 12624192 Valentine D L Adaptations to energy stress dictate the ecology and evolution of the Archaea angl Nat Rev Microbiol journal 2007 Vol 5 no 4 P 316 323 doi 10 1038 nrmicro1619 PMID 17334387 Schafer G Engelhard M Muller V Bioenergetics of the Archaea angl angl journal angl 1999 1 September vol 63 no 3 P 570 620 PMID 10477309 PMC 103747 Arhivirovano 16 oktyabrya 2019 goda Romano A Conway T Evolution of carbohydrate metabolic pathways angl Res Microbiol 1996 Vol 147 no 6 7 P 448 455 doi 10 1016 0923 2508 96 83998 2 PMID 9084754 Koch A How did bacteria come to be angl angl journal Academic Press 1998 Vol 40 P 353 399 doi 10 1016 S0065 2911 08 60135 6 PMID 9889982 DiMarco A A Bobik T A Wolfe R S Unusual coenzymes of methanogenesis angl angl journal 1990 Vol 59 P 355 394 doi 10 1146 annurev bi 59 070190 002035 PMID 2115763 Klocke M Nettmann E Bergmann I et al Characterization of the methanogenic Archaea within two phase biogas reactor systems operated with plant biomass angl angl journal 2008 May vol 31 no 3 P 190 205 doi 10 1016 j syapm 2008 02 003 PMID 18501543 Mueller Cajar O Badger M R New roads lead to Rubisco in archaebacteria angl angl journal 2007 August vol 29 no 8 P 722 724 doi 10 1002 bies 20616 PMID 17621634 Berg I A Kockelkorn D Buckel W Fuchs G A 3 hydroxypropionate 4 hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea angl Science journal 2007 December vol 318 no 5857 P 1782 1786 doi 10 1126 science 1149976 Bibcode 2007Sci 318 1782B PMID 18079405 Thauer R K Microbiology A fifth pathway of carbon fixation angl Science 2007 December vol 318 no 5857 P 1732 1733 doi 10 1126 science 1152209 PMID 18079388 Bryant D A Frigaard N U Prokaryotic photosynthesis and phototrophy illuminated angl angl journal 2006 November vol 14 no 11 P 488 496 doi 10 1016 j tim 2006 09 001 PMID 16997562 Konneke M Bernhard A E de la Torre J R Walker C B Waterbury J B Stahl D A Isolation of an autotrophic ammonia oxidizing marine archaeon angl Nature journal 2005 September vol 437 no 7058 P 543 546 doi 10 1038 nature03911 Bibcode 2005Natur 437 543K PMID 16177789 Francis C A Beman J M Kuypers M M New processes and players in the nitrogen cycle the microbial ecology of anaerobic and archaeal ammonia oxidation angl angl journal 2007 May vol 1 no 1 P 19 27 doi 10 1038 ismej 2007 8 PMID 18043610 Osnovano na PDB 1FBB Arhivnaya kopiya ot 3 marta 2016 na Wayback Machine Dannye opublikovany v Subramaniam S Henderson R Molecular mechanism of vectorial proton translocation by bacteriorhodopsin angl Nature journal 2000 August vol 406 no 6796 P 653 657 doi 10 1038 35020614 PMID 10949309 Lanyi J K Bacteriorhodopsin angl Annu Rev Physiol 2004 Vol 66 P 665 688 doi 10 1146 annurev physiol 66 032102 150049 PMID 14977418 Galagan J E Nusbaum C Roy A Allen N Naylor J Stange Thomann N Dearellano K Johnson R Linton L Mcewan P Mckernan K Talamas J Tirrell A Ye W Zimmer A Barber RD Cann I Graham DE Grahame DA Guss AM Hedderich R Ingram Smith C Kuettner HC Krzycki JA Leigh JA Li W Liu J Mukhopadhyay B Reeve JN Smith K Springer TA Umayam LA White O White RH Conway De Macario E Ferry JG Jarrell KF Jing H Macario AJ Paulsen I Pritchett M Sowers KR Swanson RV Zinder SH Lander E Metcalf WW Birren B et al The genome of M acetivorans reveals extensive metabolic and physiological diversity angl Genome Res journal 2002 April vol 12 no 4 P 532 542 doi 10 1101 gr 223902 PMID 11932238 PMC 187521 Waters E Lin X Mathur E Ni J Podar M Richardson T Sutton GG Simon M Soll D Stetter KO Short JM Noordewier M et al The genome of Nanoarchaeum equitans insights into early archaeal evolution and derived parasitism angl Proceedings of the National Academy of Sciences of the United States of America journal 2003 Vol 100 no 22 P 12984 12988 doi 10 1073 pnas 1735403100 Bibcode 2003PNAS 10012984W PMID 14566062 PMC 240731 Arhivirovano 16 oktyabrya 2019 goda Schleper C Holz I Janekovic D Murphy J Zillig W A multicopy plasmid of the extremely thermophilic archaeon Sulfolobus effects its transfer to recipients by mating angl angl journal 1995 1 August vol 177 no 15 P 4417 4426 PMID 7635827 PMC 177192 Arhivirovano 29 maya 2012 goda Sota M Top E M Horizontal Gene Transfer Mediated by Plasmids Plasmids Current Research and Future Trends angl angl 2008 Xiang X Chen L Huang X Luo Y She Q Huang L Sulfolobus tengchongensis spindle shaped virus STSV1 virus host interactions and genomic features angl angl journal 2005 Vol 79 no 14 P 8677 8686 doi 10 1128 JVI 79 14 8677 8686 2005 PMID 15994761 PMC 1168784 Arhivirovano 16 oktyabrya 2019 goda Prangishvili D Forterre P Garrett R A Viruses of the Archaea a unifying view angl Nat Rev Microbiol journal 2006 Vol 4 no 11 P 837 848 doi 10 1038 nrmicro1527 PMID 17041631 Prangishvili D Garrett R A Exceptionally diverse morphotypes and genomes of crenarchaeal hyperthermophilic viruses angl angl journal 2004 Vol 32 no Pt 2 P 204 208 doi 10 1042 BST0320204 PMID 15046572 Arhivirovano 18 aprelya 2006 goda Pietila M K Roine E Paulin L Kalkkinen N Bamford D H An ssDNA virus infecting archaea A new lineage of viruses with a membrane envelope angl angl journal angl 2009 March vol 72 no 2 P 307 319 doi 10 1111 j 1365 2958 2009 06642 x PMID 19298373 Mojica F J Diez Villasenor C Garcia Martinez J Soria E Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements angl angl journal 2005 Vol 60 no 2 P 174 182 doi 10 1007 s00239 004 0046 3 PMID 15791728 Makarova K S Grishin N V Shabalina S A Wolf Y I Koonin E V A putative RNA interference based immune system in prokaryotes computational analysis of the predicted enzymatic machinery functional analogies with eukaryotic RNAi and hypothetical mechanisms of action angl angl journal 2006 Vol 1 P 7 doi 10 1186 1745 6150 1 7 PMID 16545108 PMC 1462988 Graham D E Overbeek R Olsen G J Woese C R An archaeal genomic signature angl Proceedings of the National Academy of Sciences of the United States of America journal 2000 Vol 97 no 7 P 3304 3308 doi 10 1073 pnas 050564797 Bibcode 2000PNAS 97 3304G PMID 10716711 PMC 16234 Gaasterland T Archaeal genomics angl Curr Opin Microbiol 1999 Vol 2 no 5 P 542 547 doi 10 1016 S1369 5274 99 00014 4 PMID 10508726 Allers T Mevarech M Archaeal genetics the third way angl Nat Rev Genet journal 2005 Vol 6 no 1 P 58 73 doi 10 1038 nrg1504 PMID 15630422 Werner F Structure and function of archaeal RNA polymerases angl angl journal angl 2007 September vol 65 no 6 P 1395 1404 doi 10 1111 j 1365 2958 2007 05876 x PMID 17697097 Aravind L Koonin E V DNA binding proteins and evolution of transcription regulation in the archaea angl Nucleic Acids Res journal 1999 Vol 27 no 23 P 4658 4670 doi 10 1093 nar 27 23 4658 PMID 10556324 PMC 148756 Arhivirovano 16 oktyabrya 2019 goda Lykke Andersen J Aagaard C Semionenkov M Garrett R A Archaeal introns splicing intercellular mobility and evolution angl angl journal 1997 September vol 22 no 9 P 326 331 doi 10 1016 S0968 0004 97 01113 4 PMID 9301331 Watanabe Y Yokobori S Inaba T et al Introns in protein coding genes in Archaea angl angl journal 2002 January vol 510 no 1 2 P 27 30 doi 10 1016 S0014 5793 01 03219 7 PMID 11755525 Yoshinari S Itoh T Hallam S J et al Archaeal pre mRNA splicing a connection to hetero oligomeric splicing endonuclease angl Biochem Biophys Res Commun journal 2006 August vol 346 no 3 P 1024 1032 doi 10 1016 j bbrc 2006 06 011 PMID 16781672 Bernander R Archaea and the cell cycle angl angl journal angl 1998 Vol 29 no 4 P 955 961 doi 10 1046 j 1365 2958 1998 00956 x PMID 9767564 Kelman L M Kelman Z Multiple origins of replication in archaea angl angl journal 2004 Vol 12 no 9 P 399 401 doi 10 1016 j tim 2004 07 001 PMID 15337158 Onyenwoke R U Brill J A Farahi K Wiegel J Sporulation genes in members of the low G C Gram type positive phylogenetic branch Firmicutes angl angl journal 2004 Vol 182 no 2 3 P 182 192 doi 10 1007 s00203 004 0696 y PMID 15340788 Kostrikina N A Zvyagintseva I S Duda V I Cytological peculiarities of some extremely halophilic soil archaeobacteria angl angl journal 1991 Vol 156 no 5 P 344 349 doi 10 1007 BF00248708 DeLong E F Pace N R Environmental diversity of bacteria and archaea angl Syst Biol journal 2001 Vol 50 no 4 P 470 478 doi 10 1080 106351501750435040 PMID 12116647 Pikuta E V Hoover R B Tang J Microbial extremophiles at the limits of life angl angl journal 2007 Vol 33 no 3 P 183 209 doi 10 1080 10408410701451948 PMID 17653987 Madigan M T Martino J M Brock Biology of Microorganisms angl 11th Pearson 2006 P 136 ISBN 0 13 196893 9 Takai K Nakamura K Toki T Tsunogai U Miyazaki M Miyazaki J Hirayama H Nakagawa S Nunoura T Horikoshi K Cell proliferation at 122 C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high pressure cultivation angl Proceedings of the National Academy of Sciences of the United States of America journal 2008 Vol 105 no 31 P 10949 10954 doi 10 1073 pnas 0712334105 Bibcode 2008PNAS 10510949T PMID 18664583 PMC 2490668 Ciaramella M Napoli A Rossi M Another extreme genome how to live at pH 0 angl angl journal 2005 February vol 13 no 2 P 49 51 doi 10 1016 j tim 2004 12 001 PMID 15680761 Javaux E J Extreme life on Earth past present and possibly beyond angl Res Microbiol journal 2006 Vol 157 no 1 P 37 48 doi 10 1016 j resmic 2005 07 008 PMID 16376523 Nealson K H Post Viking microbiology new approaches new data new insights angl Orig Life Evol Biosph journal 1999 January vol 29 no 1 P 73 93 doi 10 1023 A 1006515817767 PMID 11536899 Arhivirovano 16 oktyabrya 2019 goda Davies P C The transfer of viable microorganisms between planets angl Ciba Found Symp journal 1996 Vol 202 P 304 314 PMID 9243022 Lopez Garcia P Lopez Lopez A Moreira D Rodriguez Valera F Diversity of free living prokaryotes from a deep sea site at the Antarctic Polar Front angl angl journal 2001 July vol 36 no 2 3 P 193 202 PMID 11451524 Karner M B DeLong E F Karl D M Archaeal dominance in the mesopelagic zone of the Pacific Ocean angl Nature journal 2001 Vol 409 no 6819 P 507 510 doi 10 1038 35054051 PMID 11206545 Giovannoni S J Stingl U Molecular diversity and ecology of microbial plankton angl Nature journal 2005 Vol 427 no 7057 P 343 348 doi 10 1038 nature04158 Bibcode 2005Natur 437 343G PMID 16163344 DeLong E F Karl D M Genomic perspectives in microbial oceanography angl Nature 2005 September vol 437 no 7057 P 336 342 doi 10 1038 nature04157 Bibcode 2005Natur 437 336D PMID 16163343 Konneke M Bernhard A E de la Torre J R Walker C B Waterbury J B Stahl DA Isolation of an autotrophic ammonia oxidizing marine archaeon angl Nature journal 2005 Vol 437 no 7057 P 543 546 doi 10 1038 nature03911 Bibcode 2005Natur 437 543K PMID 16177789 Agogue H Maaike B Dinasquet J Herndl GJ Agogue H Brink M Dinasquet J Herndl G J Major gradients in putatively nitrifying and non nitrifying Archaea in the deep North Atlantic angl Nature journal 2008 Vol 456 no 7223 P 788 791 doi 10 1038 nature07535 Bibcode 2008Natur 456 788A PMID 19037244 Teske A Sorensen K B Uncultured archaea in deep marine subsurface sediments have we caught them all angl angl journal 2008 January vol 2 no 1 P 3 18 doi 10 1038 ismej 2007 90 PMID 18180743 Lipp J S Morono Y Inagaki F Hinrichs K U Significant contribution of Archaea to extant biomass in marine subsurface sediments angl Nature journal 2008 July vol 454 no 7207 P 991 994 doi 10 1038 nature07174 Bibcode 2008Natur 454 991L PMID 18641632 Cabello P Roldan M D Moreno Vivian C Nitrate reduction and the nitrogen cycle in archaea angl angl journal angl 2004 November vol 150 no Pt 11 P 3527 3546 doi 10 1099 mic 0 27303 0 PMID 15528644 Arhivirovano 7 iyunya 2011 goda Mehta M P Baross J A Nitrogen fixation at 92 degrees C by a hydrothermal vent archaeon angl Science journal 2006 December vol 314 no 5806 P 1783 1786 doi 10 1126 science 1134772 Bibcode 2006Sci 314 1783M PMID 17170307 Coolen M J Abbas B van Bleijswijk J et al Putative ammonia oxidizing Crenarchaeota in suboxic waters of the Black Sea a basin wide ecological study using 16S ribosomal and functional genes and membrane lipids angl Environ Microbiol journal 2007 April vol 9 no 4 P 1001 1016 doi 10 1111 j 1462 2920 2006 01227 x PMID 17359272 Leininger S Urich T Schloter M et al Archaea predominate among ammonia oxidizing prokaryotes in soils angl Nature journal 2006 August vol 442 no 7104 P 806 809 doi 10 1038 nature04983 Bibcode 2006Natur 442 806L PMID 16915287 Baker B J Banfield J F Microbial communities in acid mine drainage angl angl journal 2003 Vol 44 no 2 P 139 152 doi 10 1016 S0168 6496 03 00028 X PMID 19719632 nedostupnaya ssylka Schimel J Playing scales in the methane cycle from microbial ecology to the globe angl Proceedings of the National Academy of Sciences of the United States of America journal 2004 August vol 101 no 34 P 12400 12401 doi 10 1073 pnas 0405075101 Bibcode 2004PNAS 10112400S PMID 15314221 PMC 515073 Arhivirovano 16 oktyabrya 2019 goda EDGAR 3 2 Fast Track 2000 angl Data obrasheniya 2 yanvarya 2025 Arhivirovano iz originala 21 maya 2008 goda Annual Greenhouse Gas Index AGGI Indicates Sharp Rise in Carbon Dioxide and Methane in 2007 angl 23 aprelya 2008 Data obrasheniya 2 yanvarya 2025 Arhivirovano iz originala 14 maya 2008 goda Trace Gases Current Observations Trends and Budgets angl Climate Change 2001 United Nations Environment Programme Data obrasheniya 2 yanvarya 2025 Arhivirovano iz originala 16 marta 2002 goda Eckburg P Lepp P Relman D Archaea and their potential role in human disease angl angl journal 2003 Vol 71 no 2 P 591 596 doi 10 1128 IAI 71 2 591 596 2003 PMID 12540534 PMC 145348 Cavicchioli R Curmi P Saunders N Thomas T Pathogenic archaea do they exist angl angl journal 2003 Vol 25 no 11 P 1119 1128 doi 10 1002 bies 10354 PMID 14579252 Lepp P Brinig M Ouverney C Palm K Armitage G Relman D Methanogenic Archaea and human periodontal disease angl Proceedings of the National Academy of Sciences of the United States of America journal 2004 Vol 101 no 16 P 6176 6181 doi 10 1073 pnas 0308766101 Bibcode 2004PNAS 101 6176L PMID 15067114 PMC 395942 Vianna M E Conrads G Gomes B P Horz H P Identification and quantification of archaea involved in primary endodontic infections angl J Clin Microbiol journal 2006 April vol 44 no 4 P 1274 1282 doi 10 1128 JCM 44 4 1274 1282 2006 PMID 16597851 PMC 1448633 Arhivirovano 16 oktyabrya 2019 goda Waters E Hohn M J Ahel I Lin X Mathur E Ni J Podar M Richardson T Sutton GG Simon M Soll D Stetter KO Short JM Noordewier M et al The genome of Nanoarchaeum equitans insights into early archaeal evolution and derived parasitism angl Proceedings of the National Academy of Sciences of the United States of America journal 2003 October vol 100 no 22 P 12984 12988 doi 10 1073 pnas 1735403100 Bibcode 2003PNAS 10012984W PMID 14566062 PMC 240731 Arhivirovano 16 oktyabrya 2019 goda Jahn U Gallenberger M Paper W et al Nanoarchaeum equitans and Ignicoccus hospitalis new insights into a unique intimate association of two archaea angl angl journal 2008 March vol 190 no 5 P 1743 1750 doi 10 1128 JB 01731 07 PMID 18165302 PMC 2258681 Arhivirovano 27 maya 2020 goda rus Arheepodobnye acidofilnye nanoorganizmy Richmondskih rudnikov Baker B J Comolli L R Dick G J Hauser L J Hyatt D Dill B D Land M L VerBerkmoes N C Hettich R L Banfield J F Enigmatic ultrasmall uncultivated Archaeaa angl Proceedings of the National Academy of Sciences of the United States of America journal 2010 May vol 107 no 19 P 8806 8811 doi 10 1073 pnas 0914470107 PMID 20421484 PMC 2889320 Arhivirovano 10 fevralya 2021 goda Chaban B Ng S Y Jarrell K F Archaeal habitats from the extreme to the ordinary angl angl journal angl 2006 February vol 52 no 2 P 73 116 doi 10 1139 w05 147 PMID 16541146 Schink B Energetics of syntrophic cooperation in methanogenic degradation angl angl journal angl 1997 June vol 61 no 2 P 262 280 PMID 9184013 PMC 232610 Lange M Lange M Westermann P Westermann P Ahring BK Ahring B K Archaea in protozoa and metazoa angl angl journal Springer 2005 Vol 66 no 5 P 465 474 doi 10 1007 s00253 004 1790 4 PMID 15630514 van Hoek A H van Alen T A Sprakel V S et al Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates angl angl journal Oxford University Press 2000 1 February vol 17 no 2 P 251 258 PMID 10677847 Arhivirovano 16 oktyabrya 2019 goda Preston C M Wu K Y Molinski T F Delong E F A psychrophilic crenarchaeon inhabits a marine sponge Cenarchaeum symbiosum gen nov sp nov angl Proceedings of the National Academy of Sciences of the United States of America journal 1996 Vol 93 no 13 P 6241 6246 doi 10 1073 pnas 93 13 6241 Bibcode 1996PNAS 93 6241P PMID 8692799 PMC 39006 Eckburg P B Bik E M Bernstein C N et al Diversity of the human intestinal microbial flora angl Science 2005 June vol 308 no 5728 P 1635 1638 doi 10 1126 science 1110591 Bibcode 2005Sci 308 1635E PMID 15831718 PMC 1395357 Samuel B S Gordon J I A humanized gnotobiotic mouse model of host archaeal bacterial mutualism angl Proceedings of the National Academy of Sciences of the United States of America journal 2006 June vol 103 no 26 P 10011 10016 doi 10 1073 pnas 0602187103 Bibcode 2006PNAS 10310011S PMID 16782812 PMC 1479766 Wegley L Wegley L Yu Yu Y Breitbart Breitbart M Casas Casas V Kline Kline D I Rohwer Rohwer F Coral associated Archaea angl angl journal 2004 Vol 273 P 89 96 doi 10 3354 meps273089 Arhivirovano 11 sentyabrya 2008 goda Chelius M K Triplett E W The Diversity of Archaea and Bacteria in Association with the Roots of Zea mays L angl Microb Ecol journal 2001 April vol 41 no 3 P 252 263 doi 10 1007 s002480000087 PMID 11391463 Simon H M Dodsworth J A Goodman R M Crenarchaeota colonize terrestrial plant roots angl Environ Microbiol 2000 October vol 2 no 5 P 495 505 doi 10 1046 j 1462 2920 2000 00131 x PMID 11233158 Gevers D Dawyndt P Vandamme P et al Stepping stones towards a new prokaryotic taxonomy angl Philos Trans R Soc Lond B Biol Sci journal 2006 Vol 361 no 1475 P 1911 1916 doi 10 1098 rstb 2006 1915 PMID 17062410 PMC 1764938 Arhivirovano 20 dekabrya 2012 goda Robertson C E Harris J K Spear J R Pace N R Phylogenetic diversity and ecology of environmental Archaea angl Curr Opin Microbiol journal 2005 Vol 8 no 6 P 638 642 doi 10 1016 j mib 2005 10 003 PMID 16236543 Huber H Hohn M J Rachel R Fuchs T Wimmer V C Stetter K O A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont angl Nature journal 2002 Vol 417 no 6884 P 27 28 doi 10 1038 417063a PMID 11986665 Barns S M Delwiche C F Palmer J D Pace N R Perspectives on archaeal diversity thermophily and monophyly from environmental rRNA sequences angl Proceedings of the National Academy of Sciences of the United States of America journal 1996 Vol 93 no 17 P 9188 9193 doi 10 1073 pnas 93 17 9188 Bibcode 1996PNAS 93 9188B PMID 8799176 PMC 38617 Arhivirovano 8 maya 2020 goda Elkins J G Podar M Graham D E Goltsman E Barry K Koonin EV Hugenholtz P Kyrpides N Wanner G Richardson P Keller M Stetter K O et al A korarchaeal genome reveals insights into the evolution of the Archaea angl Proceedings of the National Academy of Sciences of the United States of America journal 2008 June vol 105 no 23 P 8102 8107 doi 10 1073 pnas 0801980105 Bibcode 2008PNAS 105 8102E PMID 18535141 PMC 2430366 Arhivirovano 27 maya 2020 goda Baker B J Tyson G W Webb R I Flanagan J Hugenholtz P and Banfield J F Lineages of acidophilic Archaea revealed by community genomic analysis Science angl Science journal 2006 Vol 314 no 6884 P 1933 1935 doi 10 1126 science 1132690 Bibcode 2006Sci 314 1933B PMID 17185602 Baker B J Comolli L R Dick G J et al Enigmatic ultrasmall uncultivated Archaea angl Proceedings of the National Academy of Sciences of the United States of America journal 2010 May vol 107 no 19 P 8806 8811 doi 10 1073 pnas 0914470107 Bibcode 2010PNAS 107 8806B PMID 20421484 PMC 2889320 de Queiroz K Ernst Mayr and the modern concept of species angl Proceedings of the National Academy of Sciences of the United States of America journal 2005 Vol 102 no Suppl 1 P 6600 6607 doi 10 1073 pnas 0502030102 Bibcode 2005PNAS 102 6600D PMID 15851674 PMC 1131873 Arhivirovano 16 oktyabrya 2019 goda Eppley J M Tyson G W Getz W M Banfield J F Genetic exchange across a species boundary in the archaeal genus ferroplasma angl Genetics journal 2007 Vol 177 no 1 P 407 416 doi 10 1534 genetics 107 072892 PMID 17603112 PMC 2013692 Arhivirovano 16 oktyabrya 2019 goda Papke R T Zhaxybayeva O Feil E J Sommerfeld K Muise D Doolittle W F Searching for species in haloarchaea angl Proceedings of the National Academy of Sciences of the United States of America journal 2007 Vol 104 no 35 P 14092 14097 doi 10 1073 pnas 0706358104 Bibcode 2007PNAS 10414092P PMID 17715057 PMC 1955782 Arhivirovano 16 oktyabrya 2019 goda Kunin V Goldovsky L Darzentas N Ouzounis C A The net of life reconstructing the microbial phylogenetic network angl Genome Res journal 2005 Vol 15 no 7 P 954 959 doi 10 1101 gr 3666505 PMID 15965028 PMC 1172039 Arhivirovano 16 oktyabrya 2019 goda Hugenholtz P Exploring prokaryotic diversity in the genomic era angl angl 2002 Vol 3 no 2 P REVIEWS0003 doi 10 1186 gb 2002 3 2 reviews0003 PMID 11864374 PMC 139013 Arhivirovano 15 marta 2020 goda Rappe M S Giovannoni S J The uncultured microbial majority angl Annu Rev Microbiol 2003 Vol 57 P 369 394 doi 10 1146 annurev micro 57 030502 090759 PMID 14527284 Morozova O V Zagadki arhej i ih fagov Vestnik VOGiS 2005 T 9 1 S 55 66 Spang A Hatzenpichler R Brochier Armanet C Rattei T Tischler P Spieck E Streit W Stahl D A Wagner M Schleper C Distinct gene set in two different lineages of ammonia oxidizing archaea supports the phylum Thaumarchaeota angl angl journal 2010 Vol 18 no 8 P 331 340 PMID 20598889 Arhivirovano 2 iyunya 2013 goda Spang A Saw J H Jorgensen S L Zaremba Niedzwiedzka K Martijn J Lind A E van Eijk R Schleper C Guy L Ettema T J Complex archaea that bridge the gap between prokaryotes and eukaryotes angl Nature 2015 doi 10 1038 nature14447 PMID 25945739 Seitz K W Lazar C S Hinrichs K U Teske A P Baker B J Genomic reconstruction of a novel deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction angl The ISME journal 2016 Vol 10 no 7 P 1696 1705 doi 10 1038 ismej 2015 233 PMID 26824177 Breithaupt H The hunt for living gold The search for organisms in extreme environments yields useful enzymes for industry angl angl journal 2001 Vol 2 no 11 P 968 971 doi 10 1093 embo reports kve238 PMID 11713183 PMC 1084137 Egorova K Antranikian G Industrial relevance of thermophilic Archaea angl Curr Opin Microbiol 2005 Vol 8 no 6 P 649 655 doi 10 1016 j mib 2005 10 015 PMID 16257257 Synowiecki J Grzybowska B Zdzieblo A Sources properties and suitability of new thermostable enzymes in food processing angl angl journal 2006 Vol 46 no 3 P 197 205 doi 10 1080 10408690590957296 PMID 16527752 Jenney F E Adams M W The impact of extremophiles on structural genomics and vice versa angl Extremophiles journal 2008 January vol 12 no 1 P 39 50 doi 10 1007 s00792 007 0087 9 PMID 17563834 Schiraldi C Giuliano M De Rosa M Perspectives on biotechnological applications of archaea angl Archaea journal 2002 Vol 1 no 2 P 75 86 doi 10 1155 2002 436561 PMID 15803645 PMC 2685559 Arhivirovano 26 avgusta 2013 goda Norris P R Burton N P Foulis N A Acidophiles in bioreactor mineral processing angl Extremophiles 2000 Vol 4 no 2 P 71 6 doi 10 1007 s007920050139 PMID 10805560 O Connor E M Shand R F Halocins and sulfolobicins the emerging story of archaeal protein and peptide antibiotics angl J Ind Microbiol Biotechnol journal 2002 January vol 28 no 1 P 23 31 doi 10 1038 sj jim 7000190 PMID 11938468 Shand R F Leyva K J Archaeal Antimicrobials An Undiscovered Country Archaea New Models for Prokaryotic Biology angl Blum P ed angl 2008 ISBN 978 1 904455 27 1 LiteraturaV Vikislovare est statya arhei Vorobeva L V Arhei Uchebnoe posobie dlya vuzov M Akademkniga 2007 447 s Gromov B V Udivitelnyj mir arhej SOZh 1997 4 S 23 26 Morozova O V Zagadki arhej i ih fagov Vestnik VOGiS 2005 Tom 9 1 S 55 66 Thomas Cavalier Smith Cell evolution and Earth history stasis and revolution 2006 SsylkiVolkova Olga Zakinuli arhei evolyucionnyj nevod i vytyanuli rus Sajt Biomolecula ru 22 yanvarya 2015 Data obrasheniya 5 aprelya 2018 Starokadomskij Pyotr Karl Vyoze 1928 2012 rus Sajt Biomolecula ru 7 fevralya 2013 Data obrasheniya 5 aprelya 2018 Panov Andrej Kak sostavlyalsya genom eukariot endosimbioz VS nepreryvnyj gorizontalnyj perenos rus Sajt Biomolecula ru 22 sentyabrya 2015 Data obrasheniya 5 aprelya 2018 Konyshev Ilya Arhei hamyat i pomogayut rus Sajt Biomolecula ru 3 sentyabrya 2015 Data obrasheniya 2 yanvarya 2025 Kondratenko Yuliya Mezhdu bakteriyami i arheyami okislyayushimi metan obnaruzhena elektroprovodka rus Sajt Biomolecula ru 22 dekabrya 2015 Data obrasheniya 5 aprelya 2018 Eta statya vhodit v chislo izbrannyh statej russkoyazychnogo razdela Vikipedii